

Contents lists available at ScienceDirect

Journal of Solid State Chemistry



journal homepage: www.elsevier.com/locate/jssc

# Syntheses and crystal structures of $RE_3MnSn_{5-x}$ (RE=Tm, Lu) with 3D Mn–Sn framework

# Xiao-Wu Lei<sup>a,b</sup>, Chun-Li Hu<sup>a</sup>, Jiang-Gao Mao<sup>a,\*</sup>

<sup>a</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China <sup>b</sup> Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China

# ARTICLE INFO

Article history: Received 25 March 2010 Received in revised form 24 June 2010 Accepted 3 July 2010 Available online 23 July 2010

Keywords: Intermetallics Crystal structures Stannides Electronic structure calculation

# ABSTRACT

Four new isostructural rare earth manganese stannides, namely  $RE_3MnSn_{5-x}$  (x=0.16(6), 0.29(1) for RE=Tm, x=0.05(8), 0.21(3) for RE=Lu), have been obtained by reacting the mixture of corresponding pure elements at high temperature. Single-crystal X-ray diffraction studies revealed that they crystallized in the orthorhombic space group *Pnma* (No. 62) with cell parameters of a=18.384(9)-18.495(6) Å, b=6.003(3)-6.062(2) Å, c=14.898(8)-14.976(4) Å, V=1644.3(14)-1679.0(9) Å<sup>3</sup> and Z=8. Their structures belong to the Hf<sub>3</sub>Cr<sub>2</sub>Si<sub>4</sub> type and feature a 3D framework composed of 1D [Mn<sub>2</sub>Sn<sub>7</sub>] chains interconnected by [Sn<sub>3</sub>] double chains via Sn–Sn bonds, forming 1D large channels based on [Mn<sub>4</sub>Sn<sub>16</sub>] 20-membered rings along the *b*-axis, which are occupied by the rare earth atoms. Electronic structure calculations based on density functional theory (DFT) for idealized "RE<sub>3</sub>MnSn<sub>5</sub>" model indicate that these compounds are metallic, which are in accordance with the results from temperature-dependent resistivity measurements.

© 2010 Elsevier Inc. All rights reserved.

# 1. Introduction

Ternary rare-earth (RE) transition-metal (TM) tetrelides RE-TM-Tt (Tt=Si, Ge, Sn) have been extensively investigated in the past several decades due to their remarkable structural diversity and novel chemical bonding [1–11]. These compounds display interesting physical properties associated with either RE or/and TM substructure. For example, some ternary tetrelides of Yb<sub>3</sub>Rh<sub>4</sub>Sn<sub>13</sub> or Sc<sub>5</sub>Co<sub>4</sub>Si<sub>10</sub> type structure display coexistence of superconductivities and magnetic properties [12,13]; cerium stannides exhibit a variety of unusual physical properties such as long-range magnetic ordering, Kondo effect, and coexistence of heavy fermion behavior and superconductivity or valence fluctuation behavior [14,15].

Among these phases, those containing a late transition metal (such as Co, Ni, Cu, Zn) are now relatively well known [16–26]; however, reports on those containing manganese metal are still scarce. It is reported that manganese-based tetrelides also display interesting structural characters. For example, the equiatomic *REMnTt* (Tt=Si, Ge) of CeFeSi-type feature a 2D corrugated [Mn*Tt*] layer separated by rare earth atoms [27,28], and *REMn*<sub>2</sub>*Tt*<sub>2</sub> (Tt=Si, Ge) of ThCr<sub>2</sub>Si<sub>2</sub>-type feature a 3D framework composed of the same 2D [Mn*Tt*] layers interconnected via direct *Tt*-*Tt* bonds [29–31]. Similarly, the structure of *RE*MnSi<sub>2</sub> (CeNiSi<sub>2</sub>-type)

E-mail address: mjg@fjirsm.ac.cn (J.-G. Mao).

features a 3D framework composed of the same 2D [MnSi] layers and zigzag Si chains interconnected via Si–Si bonds [32–34]. With a higher tetrel metal content, a series of HfFe<sub>6</sub>Ge<sub>6</sub>-type compounds,  $REMn_6Tt_6$  (Tt=Ge, Sn), have attracted considerable interest in recent years due to out-standing magnetoresistance properties and potential applications in magnetic storage devices [35-37]. It should be noted that the Mn element is apt to form various magnetic substructure based on strong Mn-Mn interaction. For example, there exists 2D square-net layer with short Mn-Mn distances of 2.8-3.0 Å in the structures of REMnTt, REMn<sub>2</sub>Tt<sub>2</sub> and REMnSi<sub>2</sub>, whereas it forms 2D hexagonal-net layer with short Mn–Mn distances of 2.6–2.8 Å in the REMn<sub>6</sub>Tt<sub>6</sub> (Tt=Ge, Sn) phases. In addition, Tb<sub>3</sub>Mn<sub>4</sub>Ge<sub>4</sub> ( $Zr_3Cu_4Si_4$ -type),  $Tm_4Mn_4Sn_7$  ( $Zr_4Co_4Ge_7$ -type) and  $RE_2Mn_3Si_5$  ( $RE=Tb-Tm_1$ , Sc<sub>2</sub>Fe<sub>3</sub>Si<sub>5</sub>-type) have also been reported with abundant magnetic properties [38-40].

Intrigued by the rich structural types and novel physical properties of these manganese-based tetrelides, we undertook systematic studies in the ternary *RE*–Mn–Sn system, about which much less is known compared with the corresponding silicides and germanides. Our exploratory studies afforded the ternary Yb<sub>4</sub>Mn<sub>2</sub>Sn<sub>5</sub> (Mg<sub>5</sub>Si<sub>6</sub>-type) [20], and attempts to prepare other rare earth analogs led to a series of new ternary stannides, namely *RE*<sub>3</sub>MnSn<sub>5-x</sub> (x=0.16(6), 0.29(1) for *RE*=Tm, x=0.05(8), 0.21(3) for *RE*=Lu). Their structures belong to the Hf<sub>3</sub>Cr<sub>2</sub>Si<sub>4</sub> type [41] and feature a 3D framework composed of 1D [Mn<sub>2</sub>Sn<sub>7</sub>] chains interconnected by [Sn<sub>3</sub>] double chains via Sn–Sn bonds, forming 1D large tunnels along the *b*-axis occupied by rare earth atoms.

<sup>\*</sup> Corresponding author. Fax: +86 591 83704836.

<sup>0022-4596/\$ -</sup> see front matter  $\circledcirc$  2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2010.07.003

Herein, we report their syntheses, crystal structures, band structures and physical properties.

# 2. Experimental section

# 2.1. Preparation of $RE_3MnSn_{5-x}$ (RE=Tm, Lu)

All manipulations were performed inside an argon-filled glove box with moisture level below 1 ppm. All starting materials were used as received: rare earth blocks (Acros, 99.99%), manganese powder (Shanghai fourth chemical reagent company, 99.99%) and tin granules (Acros, 99.99%). It should be noted that the purity of manganese powder corresponds to the metals purity and its surface may contain small amount of metal oxide impurity due to the oxide formation on the surface. Single crystal of  $Tm_3MnSn_{5-x}$ (x=0.29(1)) was initially obtained by reacting the mixture of Tm, Mn and Sn metal in molar ratio of 4:2:5 during our attempts to prepare the Tm analog of Yb<sub>4</sub>Mn<sub>2</sub>Sn<sub>5</sub>. The sample was loaded into a niobium tube, which was subsequently arc-welded under argon atmosphere and sealed in the quartz tube under vacuum  $(\sim 10^{-4}$  Torr). The quartz tube was put into a high-temperature furnace and allowed to react at 980 °C for 7 days, and then it was allowed to cool at a rate of 0.1 °C/min to room temperature. The prism-shaped crystal of  $Tm_3MnSn_{5-x}$  (x=0.29(1)) was selected for structure determination. Attempts to prepare other analogies led to isostructural compounds of  $Tm_3MnSn_{5-x}$  (x=0.16(6)) and Lu<sub>3</sub>MnSn<sub>5-x</sub> (x=0.05(8), 0.21(3)). After proper structural analyses, these compounds were prepared in a high yield and high purity by the reaction of the mixture of the pure metals in tantalum tubes according to the loading composition of "RE<sub>3</sub>MnSn<sub>5</sub>". The use of Ta tubes instead of Nb tubes was to eliminate binary Nb<sub>3</sub>Sn impurity found in the products when Nb tubes were used. The samples were reacted at 1050 °C for 7 days and annealed at 650 °C for 15 days, and then they were allowed to slowly cool to room temperature. The purities of the sample were confirmed by the X-ray powder diffraction studies (see Supplementary materials).

# 2.2. Elemental analysis

Semi-quantitative microprobe elemental analyses for *RE*, Mn and Sn were performed on a JSM-6700F scanning electron microscope (SEM) equipped with an energy dispersive spectroscope (EDS) detector. Data were acquired with an accelerating voltage of 20 KV and SEM of 40°. Visibly clean surfaces of crystals were selected for analysis and high magnifications were used during data collection in order to obtain accurate results. The microprobe elemental analyses on single crystals of  $Tm_3MnSn_{5-x}$  (x=0.29(1)) and Lu<sub>3</sub>MnSn<sub>5-x</sub> (x=0.21(3)) indicated the presence of *RE*, Mn and Sn elements in molar ratios of 3.0(8):1.2(7):4.9(6) and 3.0(7):1.3(6):5.1(6), respectively, which are in agreement with the results derived from the single crystal X-ray diffraction refinements.

# 2.3. Crystal structure determination

Single crystals of the title compounds were selected from the reaction products and sealed into thin-walled glass capillaries within the glove-box. Data collections for the four compounds were performed on a Rigaku Mercury CCD (MoK $\alpha$  radiation, graphite monochromator) at 293(2) K. All the data sets were corrected for Lorentz factor, polarization, air absorption and absorption due to variations in the path length through the

detector faceplate. Absorption corrections based on the multiscan method were also applied [42].

All the structures were solved using direct methods (SHELX-97), and refined by least-square methods with atomic coordinates and anisotropic thermal parameters [43]. The space group for  $RE_3MnSn_{5-x}$  (RE=Tm, Lu) was determined to be *Pnma* (No. 62) based on systematic absences, E value statistics and satisfactory refinements. Site occupancy refinements indicated that all sites were fully occupied except Sn(5) sites in the four compounds as well as Sn(7) sites in the compounds 1, 2 and 4. The occupancy factors of Sn(5) sites were refined to be 81.3(7)%. 76.7(1)%. 89.5(3)% and 81.3(4)%, respectively, for compounds 1-4, and those of Sn(7) sites were refined to be 92.9(1)%. 82.6(4)% and 88.5(5)% for compounds 1, 2 and 4, respectively. Final difference Fourier maps showed featureless residual peaks of 2.24 e/Å<sup>3</sup> (2.07 Å from Sn(6) atom) and  $-2.83 \text{ e/Å}^3$  (0.70 Å from Sn(5)atom) for **1**, 2.95 e/Å<sup>3</sup> (0.92 Å from Tm(3) atom) and  $-2.21 e/Å^3$ (0.79 Å from Sn(5) atom) for **2**, 2.11 e/Å<sup>3</sup> (0.73 Å from Sn(5) atom) and  $-1.77 \text{ e/Å}^3$  (0.73 Å from Sn(5) atom) for **3**, 2.72 e/Å<sup>3</sup> (1.17 Å from Sn(3) atom) and  $-3.42 \text{ e/Å}^3$  (0.95 Å from Lu(2) atom) for **4**. The details of the crystallographic data and refinement parameters for the four compounds are summarized in Table 1. Atomic coordinates and important bond distances are listed in Tables 2-4.

Crystallographic data in CIF format for  $RE_3MnSn_{5-x}$ (x=0.16(6), 0.29(1) for RE=Tm, x=0.05(8), 0.21(3) for RE=Lu) have been given as Supplementary materials. These data can also be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247 808 666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the depository numbers CSD of 421559, 421560, 421561 and 421562.

#### 2.4. Property measurements

The polycrystalline samples were grinded to fine powders, which was uniform in color and morphology and contained no other detectable phases as judged by its X-ray diffraction pattern. The X-ray diffraction (XRD) powder patterns were collected at room temperature on a X'Pert-Pro diffractometer using CuK $\alpha$  radiation ( $\lambda$ =1.5406 Å) in the 2 $\theta$  range of 5–85° with a step size of 0.04° and 10 s/step counting time. The samples were cold-pressed into 5.0 × 3.0 × 7.0 mm<sup>3</sup> bar-shaped pellets whose density attain ~80% of the theoretical values calculated from the formula refined from the single-crystal X-ray data. The resistivity measurements were performed on a Quantum Design PPMS-9 magnetometer using a standard four-probe technique in the temperature range of 5–300 K. The measurements were carried out while gradually warming the sample that was initially cooled to 5 K at zero field.

# 2.5. Electronic structure calculations

To better understand the electronic structures of the title compounds, ab initio electronic structure calculations were carried out for idealized " $RE_3$ MnSn<sub>5</sub>" model, where all the Sn sites were assumed to be fully occupied. The calculations were performed with full-potential linearized augmented plane wave plus local basis (FPLAPW+lo) method based on the density functional theory (DFT), using the general gradient approximation (GGA-PBE) to treat the exchange and correlation potential, as implemented in the WIEN2K package [44–47]. Within the FPLAPW method, the space was divided into nonoverlapping muffin-tin (MT) spheres and interstitial region. The parameter  $R_{\text{MT}} \times K_{\text{MAX}}$  ( $R_{\text{MT}}$  is the smallest muffin-tin spherical radius present in the system and  $K_{\text{MAX}}$  is the maximum modulus for

#### Table 1

Single crystal data and structure refinements for  $Tm_3MnSn_{5-x}$  with x=0.16(6) (1), 0.29(1) (2) and  $Lu_3MnSn_{5-x}$  with x=0.05(8) (3) and 0.21(3) (4).

| Compounds                                                 | 1                                    | 2                                    | 3                                    | 4                                    |
|-----------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Chemical formula                                          | Tm <sub>3</sub> MnSn <sub>4.84</sub> | Tm <sub>3</sub> MnSn <sub>4.71</sub> | Lu <sub>3</sub> MnSn <sub>4.95</sub> | Lu <sub>3</sub> MnSn <sub>4.79</sub> |
| fw                                                        | 1135.71                              | 1120.76                              | 1167.13                              | 1148.73                              |
| Space group                                               | Pnma (No. 62)                        | Pnma (No. 62)                        | Pnma (No. 62)                        | Pnma (No. 62)                        |
| a/Å                                                       | 18.495(6)                            | 18.449 (1)                           | 18.417(4)                            | 18.384(9)                            |
| b/Å                                                       | 6.062(2)                             | 6.0128(4)                            | 6.045(1)                             | 6.003(3)                             |
| c/Å                                                       | 14.976(4)                            | 14.9328(8)                           | 14.939(3)                            | 14.898(8)                            |
| $V(Å^3)$                                                  | 1679.0(9)                            | 1656.5 (2)                           | 1663.3(6)                            | 1644.3(1)                            |
| Z                                                         | 8                                    | 8                                    | 8                                    | 8                                    |
| $D_{\text{calcd}}$ (g cm <sup>-3</sup> )                  | 8.986                                | 8.988                                | 9.322                                | 9.281                                |
| Temp (K)                                                  | 293(2)                               | 293(2)                               | 293(2)                               | 293(2)                               |
| $\mu (mm^{-1})$                                           | 46.822                               | 47.085                               | 51.201                               | 51.332                               |
| Crystal size (mm)                                         | $0.18 \times 0.04 \times 0.04$       | $0.22\times0.06\times0.05$           | $0.15\times0.03\times0.03$           | $0.20 \times 0.05 \times 0.05$       |
| Index ranges                                              | $(-23, 24), \pm 7, \pm 19$           | $\pm 23, \ \pm 7, (-16, 19)$         | $(-23, 19), \pm 7, \pm 19$           | $(-23, 21), \pm 7, \pm 19$           |
| Reflections collected                                     | 12686                                | 12462                                | 12523                                | 12644                                |
| Unique reflections                                        | 2099                                 | 2069                                 | 2054                                 | 2058                                 |
| Reflections $(I > 2\sigma(I))$                            | 1927                                 | 1972                                 | 1784                                 | 1838                                 |
| GOF on $F^2$                                              | 1.173                                | 1.162                                | 1.125                                | 1.148                                |
| <i>R</i> 1, w <i>R</i> 2( $I > 2\sigma(I)$ ) <sup>a</sup> | 0.0292/0.0526                        | 0.0255/0.0539                        | 0.0187/0.0422                        | 0.0345/0.0637                        |
| R1, wR2 (all data)                                        | 0.0332/0.0541                        | 0.0274/0.0548                        | 0.0229/0.0433                        | 0.0408/0.0665                        |
| $\Delta \rho_{\rm max}  ({\rm e}/{\rm \AA}^3)$            | 2.24                                 | 2.95                                 | 2.11                                 | 2.72                                 |
| $\Delta \rho_{\min} (e/Å^3)$                              | -2.83                                | -2.21                                | -1.77                                | -3.42                                |

<sup>a</sup>  $R1 = \sum ||F_o| - |F_c|| / \sum |F_o|$ , wR2 = { $\sum w[(F_o)^2 - (F_c)^2]^2 / \sum w[(F_o)^2]^2$ }.

the reciprocal lattice vector) was used to determine the number of plane waves needed for the expansion of the wave function in the interstitial region. Here, we adopted the values of 2.5, 2.5 and 2.42 au for RE, Mn and Sn atoms, respectively, as the  $R_{\rm MT}$ radii and let  $R_{MT} \times K_{MAX} = 7$ . In addition, we used the separate energy of -8.0 Ry between the valence and core states. Thus, the RE-4f5d6s, Mn-3d4s and Sn-5s5p orbitals were treated as valence states, while RE-4d5s5p, Mn-3s3p and Sn-4p4d orbitals were acted as semicore states, with other electrons as core states. We calculated the total energy and magnetic moments with 100, 200 300 *k*-points for both compounds, and the results suggested that the calculated results did not change much from 100 to 300 k-points. Therefore in this study, we used the 200 k-point in the complete Brillouin zone, and the Brillouin zone integration was carried out with a modified tetrahedron method [48]. Self-consistency calculation of electronic structure was achieved when the total-energy variation from iteration to iteration converged to be 0.01 mRy accuracy or better. The Fermi level was selected as the energy reference ( $E_F = 0 \text{ eV}$ ). Furthermore, to improve the description of the strongly correlated 4f and 3d electrons, we also introduced the on-site Coulomb energy *U* correction, namely the GGA+*U*-type calculation [49].

# 3. Results and discussion

#### 3.1. Structural descriptions

The structures of  $RE_3MnSn_{5-x}$  (x=0.16(6) (1), 0.29(1) (2) for RE=Tm, x=0.05(8) (3), 0.21(3) (4) for RE=Lu) belong to the Hf<sub>3</sub>Cr<sub>2</sub>Si<sub>4</sub> type with RE atoms filling the Hf sites, Mn and one Sn (8*d* site) atom replacing the Cr sites, and other Sn atoms corresponding to the Si sites [41]. It is found that the unit cell volume of  $RE_3MnSn_{5-x}$  (RE=Tm, Lu) increase with the increase in radii of rare earth ions and content of Sn element. The structures of  $RE_3MnSn_{5-x}$  feature a 3D framework composed of 1D [Mn<sub>2</sub>Sn<sub>7</sub>] chains interconnected by [Sn<sub>3</sub>] double chains via Sn–Sn bonds forming large tunnels along the *b*-axis made by [Mn<sub>4</sub>Sn<sub>16</sub>] 20-memebered rings, which are occupied by a mass of rare

earth atoms (Fig. 1a). Since all compounds are isostructural, the structure of compound **1** will be discussed in detail as a representative.

The 1D [Mn<sub>2</sub>Sn<sub>7</sub>] chain can be viewed as being formed by [Mn<sub>2</sub>Sn<sub>5</sub>] chains and linear Sn single chains interconnected via Sn–Sn bonds. Each Mn(1) atom is surrounded by five unique Sn atoms (Sn(1), Sn(2), Sn(3), Sn(4) and Sn(5) atoms) in a severely distorted square pyramidal geometry. A short Sn(3)-Sn(5) bond of 2.924(2) Å can be found within the [MnSn<sub>5</sub>] polyhedron. Adjacent [MnSn<sub>5</sub>] polyhedra are interconnected via face- and edge-sharing to form 1D [Mn<sub>2</sub>Sn<sub>5</sub>] chain along the *b*-axis (Fig. 2a). The Mn-Sn bond distances fall in the narrow range of 2.747(2)-2.810(2) Å for compound **1** and 2.743(1)–2.805(1) Å for compound **3**, respectively. These Mn-Sn distances are comparable to those reported in other related compounds such as Yb<sub>4</sub>Mn<sub>2</sub>Sn<sub>5</sub> (2.790-2.791 Å) [20], Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub> (2.748-2.825 Å) [39] and TmMn<sub>6</sub>Sn<sub>6</sub> (2.754–2.861 Å) [50]. The 1D linear Sn chain is formed by Sn(6) atoms with alternating Sn(6)-Sn(6) distances of 2.976(2) and 3.086(2) Å (Fig. 3a), which is slightly different from the linear Sn chain with well-proportioned Sn-Sn distance of 2.909(8) Å in Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub> [39]. The [Mn<sub>2</sub>Sn<sub>5</sub>] chain is attached by the linear Sn chain via Sn(5)-Sn(6) bonds of 2.980(1) Å to form the 1D  $[Mn_2Sn_7]$  chain along the *b*-axis.

Another building unit is the [Sn<sub>3</sub>] double chains formed by Sn(7) and Sn(8) atoms. The Sn(7) atoms form a linear chain along the *b*-axis with alternating Sn(7)-Sn(7) bonds of 3.001(2) and 3.061(2) Å, which is similar to that composed of Sn(6) atoms. Two parallel Sn linear chains are bridged by Sn(8) atoms alternatively on both sides to form  $[Sn_3]$  double chains along the *b*-axis (Fig. 3b). The Sn(8) atom is 0.913 Å away from the plane formed by parallel Sn chains with Sn(7)-Sn(8) distances of 3.040(1) and 3.130 (1) Å. It is well known that Sn element is capable of forming various types of 1D chains, such as linear chain in Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub> [39], uniform zigzag chain in SrNiSn<sub>2</sub> [51], distorted zigzag [Sn<sub>2</sub>] chains in Sm<sub>2</sub>NiSn<sub>4</sub> [17] and zigzag [Sn<sub>3</sub>] chains in Yb<sub>3</sub>CoSn<sub>6</sub> and another type of zigzag [Sn<sub>3</sub>] chain in Yb<sub>4</sub>Mn<sub>2</sub>Sn<sub>5</sub> [20]. It should be noted that the  $[Sn_3]$  double chain in  $Tm_3MnSn_{5-x}$  is different from the zigzag [Sn<sub>3</sub>] single chain in Yb<sub>4</sub>Mn<sub>2</sub>Sn<sub>5</sub> (Fig. 3c). To the best of our knowledge, such  $[Sn_3]$  double chain in  $Tm_3MnSn_{5-x}$ has not been reported yet.

# Table 2

Atomic coordinates and equivalent displacement parameters  $(\dot{A}^2 \times 10^3)$  for the title compounds.

# Table 3

The bond distances (Å) in compounds **1** and **2**.

| Atom             | Wyckoff          | x                      | y                      | Z                      | U(eq) <sup>a</sup>   |
|------------------|------------------|------------------------|------------------------|------------------------|----------------------|
| 1                |                  |                        | 5                      |                        | (1)                  |
| Tm(1)            | 4c               | 03498(1)               | 1/4                    | 0.3173(1)              | 8(1)                 |
| Tm(2)            | 40               | 0.3428(1)              | 3/4                    | 0.3173(1)<br>0.7384(1) | 7(1)                 |
| Tm(2)            | 40               | 0.4420(1)              | 1/4                    | 0.7304(1)              | 7(1)                 |
| Tm(3)            | 40               | 0.2100(1)              | 1/4                    | 0.0612(1)              | 7(1)<br>0(1)         |
| TIII(4)<br>Tm(5) | 40               | 0.4383(1)              | 3/4                    | 0.9695(1)              | 9(1)                 |
| Im(5)            | 40               | 0.4653(1)              | 3/4                    | 0.3493(1)              | 8(1)                 |
| Im(6)            | 40               | 0.3237(1)              | 1/4                    | 0.0308(1)              | 10(1)                |
| Mn(1)            | 8d               | 0.1858(1)              | 0.4905(2)              | 0.3385(1)              | 9(1)                 |
| Sn(1)            | 40               | 0.3050(1)              | 3/4                    | 0.3844(1)              | 9(1)                 |
| Sn(2)            | 40               | 0.2335(1)              | 1/4                    | 0.4824(1)              | 9(1)                 |
| Sn(3)            | 4 <i>c</i>       | 0.3781(1)              | 1/4                    | 0.7045(1)              | 12(1)                |
| Sn(4)            | 4 <i>c</i>       | 0.2208(1)              | 1/4                    | 0.1848(1)              | 9(1)                 |
| Sn(5)            | 4 <i>c</i>       | 0.4333(1)              | 1/4                    | 0.8875(1)              | 15(1)                |
| Sn(6)            | 8d               | 0.4340(1)              | 0.4955(1)              | 0.1584(1)              | 8(1)                 |
| Sn(7)            | 8d               | 0.3673(1)              | 0.5025(1)              | 0.5400(1)              | 10(1)                |
| Sn(8)            | 4 <i>c</i>       | 0.4849(1)              | 1/4                    | 0.4418(1)              | 10(1)                |
| 2                |                  |                        |                        |                        |                      |
| Tm(1)            | 4 <i>c</i>       | 0.3498(1)              | 1/4                    | 0.3176(1)              | 6(1)                 |
| Tm(2)            | 4 <i>c</i>       | 0.4424(1)              | 3/4                    | 0.7376(1)              | 6(1)                 |
| Tm(3)            | 4 <i>c</i>       | 0.2106(1)              | 1/4                    | 0.6815(1)              | 5(1)                 |
| Tm(4)            | 4 <i>c</i>       | 0.4383(1)              | 3/4                    | 0.9693(1)              | 7(1)                 |
| Tm(5)            | 4 <i>c</i>       | 0.4654(1)              | 3/4                    | 0.3504(1)              | 6(1)                 |
| Tm(6)            | 4 <i>c</i>       | 0.3243(1)              | 1/4                    | 0.0300(1)              | 8(1)                 |
| Mn(1)            | 8d               | 0.1855(1)              | 0.4911(2)              | 0.3383(1)              | 8(1)                 |
| Sn(1)            | 4c               | 0.3054(1)              | 3/4                    | 0.3854(1)              | 7(1)                 |
| Sn(2)            | 40               | 0.2346(1)              | 1/4                    | 0.4826(1)              | 8(1)                 |
| Sn(3)            | 40               | 0.2310(1)<br>0.3781(1) | 1/4                    | 0.7034(1)              | 9(1)                 |
| Sn(3)<br>Sn(4)   | 40               | 0.2205(1)              | 1/4                    | 0.7031(1)<br>0.1837(1) | 8(1)                 |
| Sn(5)            | 40               | 0.2203(1)<br>0.4334(1) | 1/4                    | 0.1057(1)<br>0.8855(1) | 15(1)                |
| Sn(6)            | -1C<br>8d        | 0.4334(1)              | 0.4057(1)              | 0.0000(1)<br>0.1587(1) | 6(1)                 |
| Sn(0)            | 8d               | 0.3677(1)              | 0.4337(1)<br>0.5033(1) | 0.1307(1)<br>0.5307(1) | 8(1)                 |
| Sn(7)            | 0u<br>4c         | 0.3077(1)              | 1/4                    | 0.3337(1)              | 9(1)<br>9(1)         |
| 511(6)           | 40               | 0.4650(1)              | 1/4                    | 0.4423(1)              | 0(1)                 |
| 3                |                  |                        |                        |                        |                      |
| Lu(1)            | 4 <i>c</i>       | 0.3490(1)              | 1/4                    | 0.3181(1)              | 8(1)                 |
| Lu(2)            | 4 <i>c</i>       | 0.4438(1)              | 3/4                    | 0.7392(1)              | 8(1)                 |
| Lu(3)            | 4 <i>c</i>       | 0.2118(1)              | 1/4                    | 0.6820(1)              | 8(1)                 |
| Lu(4)            | 4 <i>c</i>       | 0.4373(1)              | 3/4                    | 0.9694(1)              | 10(1)                |
| Lu(5)            | 4 <i>c</i>       | 0.4648(1)              | 3/4                    | 0.3492(1)              | 8(1)                 |
| Lu(6)            | 4c               | 0.3217(1)              | 1/4                    | 0.0326(1)              | 10(1)                |
| Mn(1)            | 8d               | 0.1851(1)              | 0.4887(2)              | 0.3393(1)              | 10(1)                |
| Sn(1)            | 40               | 0.3047(1)              | 3/4                    | 0.3844(1)              | 9(1)                 |
| Sn(2)            | 40               | 0.2338(1)              | 1/4                    | 0.4835(1)              | 10(1)                |
| Sn(3)            | 40               | 0.2334(1)              | 1/4                    | 0.7060(1)              | 12(1)                |
| Sn(3)            | 40               | 0.3731(1)              | 1/4                    | 0.1862(1)              | 10(1)                |
| Sn(-1)           | 40               | 0.2200(1)<br>0.4320(1) | 1/4                    | 0.1002(1)<br>0.8027(1) | 15(1)                |
| Sn(5)            | 40<br>8 <i>d</i> | 0.4326(1)              | 0.4052(1)              | 0.0527(1)<br>0.1580(1) | $\frac{13(1)}{8(1)}$ |
| Sn(0)            | 8d               | 0.4320(1)<br>0.2676(1) | 0.4932(1)<br>0.5025(1) | 0.1389(1)              | 7(1)                 |
| SII(7)           | 0U<br>4 a        | 0.5070(1)              | 0.5025(1)              | 0.3409(1)              | 10(1)                |
| 311(0)           | 40               | 0.4647(1)              | 1/4                    | 0.4414(1)              | 10(1)                |
| 4                |                  |                        |                        |                        |                      |
| Lu(1)            | 4 <i>c</i>       | 0.3494(1)              | 1/4                    | 0.3181(1)              | 9(1)                 |
| Lu(2)            | 4 <i>c</i>       | 0.4429(1)              | 3/4                    | 0.7383(1)              | 9(1)                 |
| Lu(3)            | 4 <i>c</i>       | 0.2110(1)              | 1/4                    | 0.6821(1)              | 8(1)                 |
| Lu(4)            | 4 <i>c</i>       | 0.4378(1)              | 3/4                    | 0.9692(1)              | 11(1)                |
| Lu(5)            | 4 <i>c</i>       | 0.4650(1)              | 3/4                    | 0.3499(1)              | 9(1)                 |
| Lu(6)            | 4 <i>c</i>       | 0.3234(1)              | 1/4                    | 0.0311(1)              | 12(1)                |
| Mn(1)            | 8 <i>d</i>       | 0.1850(1)              | 0.4909(3)              | 0.3390(1)              | 10(1)                |
| Sn(1)            | 4 <i>c</i>       | 0.3050(1)              | 3/4                    | 0.3852(1)              | 9(1)                 |
| Sn(2)            | 4c               | 0.2341(1)              | 1/4                    | 0.4832(1)              | 11(1)                |
| Sn(3)            | 40               | 0.3786(1)              | 1/4                    | 0.7044(1)              | 12(1)                |
| Sn(4)            | 40               | 0.2205(1)              | 1/4                    | 0.1848(1)              | 10(1)                |
| Sn(5)            | 40               | 0.4333(1)              | 1/4                    | 0.8895(1)              | 18(1)                |
| Sn(6)            | 8d               | 0.4337(1)              | 0.4955(1)              | 0.1588(1)              | 8(1)                 |
| Sn(7)            | 8d               | 0.3677(1)              | 0.5031(2)              | 0.1388(1)<br>0.5401(1) | 10(1)                |
| Sn(2)            | 40               | 0.3077(1)              | 1/4                    | 0.3401(1)              | 10(1)<br>11(1)       |
| 51(6)            | 40               | 0.4049(1)              | 1/4                    | 0.4419(1)              | 11(1)                |
|                  |                  |                        |                        |                        |                      |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bond                                 | Distance (Å)                                | Bond                                          | Distance (Å)                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|-----------------------------------------------|--------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                    |                                             |                                               |                                            |
| $\begin{array}{c ccccc} Tm(1)-Sn(8) & 3.119(1) & Tm(4)-Sn(5) & 3.197(2) \\ Tm(1)-Sn(6) & 3.210(1) \times 2 & Tm(4)-Sn(6) & 3.223(1) \times 2 \\ Tm(1)-Sn(1) & 3.299(1) \times 2 & Tm(4)-Mn(1) & 3.354(2) \times 2 \\ Tm(1)-Mn(1) & 3.379(2) \times 2 & Tm(4)-Sn(6) & 3.385(1) \times 2 \\ Tm(2)-Sn(8) & 3.012(1) & Tm(5)-Sn(3) & 3.007(2) \\ Tm(2)-Sn(4) & 3.132(2) & Tm(5)-Sn(3) & 3.007(2) \\ Tm(2)-Sn(6) & 3.130(1) \times 2 & Tm(5)-Sn(8) & 3.261(2) \\ Tm(2)-Sn(3) & 3.299(1) \times 2 & Tm(5)-Sn(8) & 3.326(1) \times 2 \\ Tm(2)-Sn(3) & 3.299(1) \times 2 & Tm(5)-Sn(8) & 3.352(1) \times 2 \\ Tm(2)-Sn(7) & 3.617(1) \times 2 & Tm(5)-Sn(8) & 3.352(1) \times 2 \\ Tm(3)-Sn(2) & 3.008(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(3) & 3.106(1) \times 2 & Tm(6)-Sn(6) & 3.167(1) \times 2 \\ Tm(3)-Sn(4) & 3.266(1) & Tm(6)-Sn(6) & 3.167(1) \times 2 \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(1) & 3.2360(1) \\ Tm(3)-Sn(3) & 3.117(1) & Tm(6)-Sn(2) & 3.291(1) \times 2 \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Mn(1) & C(2) \times 2 \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(7) & 3.206(1) \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(7) & 3.291(1) \times 2 \\ Tm(3)-Sn(4) & 3.280(2) \times 2 & Sn(3)-Sn(5) & 2.924(2) \\ Mn(1)-Sn(2) & 2.747(2) & Sn(3)-Sn(7) & 2.908(1) \times 2 \\ Mn(1)-Sn(1) & 2.795(2) & Sn(5)-Sn(6) & 2.990(1) \times 2 \\ Mn(1)-Sn(3) & 2.810(2) & Sn(6)-Sn(6) & 3.086(2) \\ Mn(1)-Sn(1) & 2.915(3) & Sn(7)-Sn(7) & 3.001(1) \times 2 \\ Mn(1)-Sn(7) & 3.001(1) \times 2 & Sn(7)-Sn(7) & 3.001(2) \\ Mn(1)-Mn(1) & 3.147(3) & Sn(7)-Sn(7) & 3.001(2) \\ Mn(1)-Sn(7) & 3.001(1) \times 2 & Sn(7)-Sn(8) & 3.130(1) \\ \hline \begin{array}{c} 2 \\ Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(2) & 3.1962(9) \\ Tm(1)-Sn(8) & 3.1144(9) & Tm(4)-Sn(5) & 3.229(1) \\ Tm(1)-Sn(8) & 3.1144(9) & Tm(4)-Sn(6) & 3.2162(7) \times 2 \\ Tm(1)-Sn(8) & 3.1144(9) & Tm(4)-Sn(6) & 3.2162(7) \times 2 \\ Tm(1)-Sn(1) & 3.373(1) \times 2 & Tm(4)-Sn(6) & 3.2162(7) \times 2 \\ Tm(1)-Sn(4) & 3.1113(9) & Tm(5)-Sn(3) & 2.9973(9) \\ Tm(2)-Sn(6) & 3.2014(7) \times 2 & Tm(4)-Sn(6) & 3.2257(6) \times 2 \\ Tm(2)-Sn(6) & 3.218(7) \times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(1) & 3.51(1) \times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(3) & 3.2724(4) \times 2 & Tm(5)-Sn(6) & 3.2953(7) \times 2 \\ Tm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(1)-Sn(4)                          | 3.102(1)                                    | Tm(4)-Sn(2)                                   | 3.184(2)                                   |
| $\begin{array}{c ccccc} Tm(1)-Sn(6) & 3.210(1)\times 2 & Tm(4)-Sn(6) & 3.223(1)\times 2 \\ Tm(1)-Sn(2) & 3.276(1) & Tm(4)-Sn(5) & 3.272(1)\times 2 \\ Tm(1)-Mn(1) & 3.299(1)\times 2 & Tm(4)-Sn(6) & 3.385(1)\times 2 \\ Tm(2)-Sn(1) & 3.012(1) & Tm(5)-Sn(3) & 3.007(2) \\ Tm(2)-Sn(4) & 3.132(2) & Tm(5)-Sn(1) & 3.011(2) \\ Tm(2)-Sn(6) & 3.130(1)\times 2 & Tm(5)-Sn(8) & 3.261(2) \\ Tm(2)-Sn(6) & 3.130(1)\times 2 & Tm(5)-Sn(8) & 3.301(1)\times 2 \\ Tm(2)-Sn(3) & 3.299(1)\times 2 & Tm(5)-Sn(8) & 3.301(1)\times 2 \\ Tm(2)-Sn(7) & 3.617(1)\times 2 & Tm(6)-Sn(5) & 2.951(2) \\ Tm(3)-Sn(2) & 3.008(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(1) & 3.056(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(1) & 3.056(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(3) & 3.117(1) & Tm(6)-Sn(2) & 3.291(1)\times 2 \\ Tm(3)-Sn(4) & 3.286(1)\times 2 & Tm(6)-Sn(1) & 3.2360(1) \\ Tm(3)-Sn(4) & 3.286(1)\times 2 & Tm(6)-Mn(1) & C(2)\times 2 \\ Tm(3)-Mn(1) & 3.420(2)\times 2 & Sn(3)-Sn(5) & 2.924(2) \\ Mn(1)-Sn(2) & 2.747(2) & Sn(3)-Sn(7) & 2.908(1)\times 2 \\ Mn(1)-Sn(4) & 2.800(2) & Sn(4)-Sn(6) & 2.980(1)\times 2 \\ Mn(1)-Sn(4) & 2.800(2) & Sn(6)-Sn(6) & 2.976(2) \\ Mn(1)-Sn(3) & 2.810(2) & Sn(6)-Sn(6) & 2.976(2) \\ Mn(1)-Sn(3) & 2.810(2) & Sn(6)-Sn(6) & 2.976(2) \\ Mn(1)-Sn(7) & 3.001(1)\times 2 & Sn(7)-Sn(7) & 3.001(2) \\ Mn(1)-Sn(7) & 3.004(1)\times 2 & Sn(7)-Sn(8) & 3.130(1) \\ \hline 2 \\ Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(5) & 3.209(1) \times 2 \\ Mn(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(5) & 3.209(1) \times 2 \\ Mn(1)-Sn(7) & 3.004(1)\times 2 & Sn(7)-Sn(8) & 3.130(1) \\ \hline 2 \\ Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(5) & 3.209(1) \\ Tm(1)-Sn(6) & 3.2014(7)\times 2 & Tm(4)-Sn(6) & 3.2162(9) \\ Tm(1)-Sn(1) & 3.2762(4)\times 2 & Tm(4)-Sn(6) & 3.2162(7)\times 2 \\ Tm(1)-Sn(1) & 3.2762(4)\times 2 & Tm(4)-Sn(6) & 3.2698(7)\times 2 \\ Tm(1)-Sn(1) & 3.17(1)\times 2 & Tm(5)-Sn(8) & 3.2257(65)\times 2 \\ Tm(2)-Sn(8) & 3.0050(9) & Tm(5)-Sn(8) & 3.2257(6)\times 2 \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(6) & 3.2958(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(6) & 3.2958(7)\times 2 \\ Tm(2)-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tm(1)-Sn(8)                          | 3.119(1)                                    | Tm(4)-Sn(5)                                   | 3.197(2)                                   |
| $\begin{array}{c ccccc} Tm(1)-Sn(2) & 3.276(1) & Tm(4)-Sn(5) & 3.272(1) \times 2 \\ Tm(1)-Sn(1) & 3.299(1) \times 2 & Tm(4)-Mn(1) & 3.354(2) \times 2 \\ Tm(1)-Mn(1) & 3.379(2) \times 2 & Tm(4)-Sn(6) & 3.385(1) \times 2 \\ Tm(2)-Sn(8) & 3.012(1) & Tm(5)-Sn(3) & 3.007(2) \\ Tm(2)-Sn(4) & 3.132(2) & Tm(5)-Sn(8) & 3.261(2) \\ Tm(2)-Sn(6) & 3.130(1) \times 2 & Tm(5)-Sn(8) & 3.301(1) \times 2 \\ Tm(2)-Sn(3) & 3.299(1) \times 2 & Tm(5)-Sn(8) & 3.302(1) \times 2 \\ Tm(2)-Sn(3) & 3.299(1) \times 2 & Tm(5)-Sn(8) & 3.302(1) \times 2 \\ Tm(2)-Sn(7) & 3.617(1) \times 2 & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(2) & 3.008(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(1) & 3.056(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(6) & 3.106(1) \times 2 & Tm(6)-Sn(1) & 3.2360(1) \\ Tm(3)-Sn(3) & 3.117(1) & Tm(6)-Sn(2) & 3.291(1) \times 2 \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Mn(1) & C(2) \times 2 \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Mn(1) & C(2) \times 2 \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(7) & 3.008(1) \times 2 \\ Mn(1)-Sn(2) & 2.747(2) & Sn(3)-Sn(7) & 2.908(1) \times 2 \\ Mn(1)-Sn(4) & 2.800(2) & Sn(4)-Sn(7) & 3.100(1) \times 2 \\ Mn(1)-Sn(4) & 2.800(2) & Sn(6)-Sn(6) & 2.976(2) \\ Mn(1)-Sn(4) & 2.800(2) & Sn(6)-Sn(6) & 2.976(2) \\ Mn(1)-Sn(5) & 2.804(2) & Sn(6)-Sn(6) & 2.976(2) \\ Mn(1)-Sn(3) & 2.810(2) & Sn(6)-Sn(6) & 3.086(2) \\ Mn(1)-Mn(1) & 3.147(3) & Sn(7)-Sn(7) & 3.001(1) \times 2 \\ Mn(1)-Sn(7) & 3.001(1) \times 2 & Sn(7)-Sn(7) & 3.001(2) \\ Mn(1)-Mn(1) & 3.147(3) & Sn(7)-Sn(7) & 3.001(2) \\ Mn(1)-Sn(7) & 3.001(1) \times 2 & Sn(7)-Sn(8) & 3.130(1) \\ \hline \begin{array}{c} 2 \\ Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(2) & 3.1962(9) \\ Tm(1)-Sn(6) & 3.2014(7) \times 2 & Tm(4)-Sn(6) & 3.269(7) \times 2 \\ Tm(1)-Sn(1) & 3.2762(4) \times 2 & Tm(4)-Sn(6) & 3.269(7) \times 2 \\ Tm(1)-Sn(1) & 3.2762(4) \times 2 & Tm(4)-Sn(6) & 3.3698(7) \times 2 \\ Tm(1)-Sn(1) & 3.2762(4) \times 2 & Tm(5)-Sn(8) & 3.209(1) \\ Tm(2)-Sn(6) & 3.01218(7) \times 2 & Tm(5)-Sn(6) & 3.299(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(6) & 3.2254(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(6) & 3.2254(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(6) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2274(4) \times 2 & Tm(5)-Sn(6) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2274(4) \times 2 & Tm(5)-Sn(6) & 3.2254(4) \times 2 \\ Tm(2)-Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tm(1)-Sn(6)                          | $3.210(1) \times 2$                         | Tm(4)-Sn(6)                                   | $3.223(1) \times 2$                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(1)-Sn(2)                          | 3.276(1)                                    | Tm(4)-Sn(5)                                   | $3.272(1) \times 2$                        |
| $\begin{array}{c ccccc} Tm(1)-Mn(1) & 3.379(2) \times 2 & Tm(4)-Sn(6) & 3.385(1) \times 2 \\ Tm(2)-Sn(8) & 3.012(1) & Tm(5)-Sn(3) & 3.007(2) \\ Tm(2)-Sn(4) & 3.132(2) & Tm(5)-Sn(1) & 3.011(2) \\ Tm(2)-Sn(6) & 3.130(1) \times 2 & Tm(5)-Sn(8) & 3.261(2) \\ Tm(2)-Mn(1) & 3.167(2) \times 2 & Tm(5)-Sn(6) & 3.301(1) \times 2 \\ Tm(2)-Sn(3) & 3.299(1) \times 2 & Tm(5)-Sn(8) & 3.352(1) \times 2 \\ Tm(2)-Sn(7) & 3.617(1) \times 2 & Tm(6)-Sn(5) & 2.951(2) \\ Tm(3)-Sn(2) & 3.008(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(1) & 3.056(1) & Tm(6)-Sn(6) & 3.167(1) \times 2 \\ Tm(3)-Sn(3) & 3.117(1) & Tm(6)-Sn(6) & 3.167(1) \times 2 \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(1) & 3.2360(1) \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(1) & 3.291(1) \times 2 \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Mn(1) & C(2) \times 2 \\ Tm(3)-Mn(1) & 3.420(2) \times 2 & Sn(3)-Sn(5) & 2.924(2) \\ Mn(1)-Sn(2) & 2.747(2) & Sn(3)-Sn(7) & 2.908(1) \times 2 \\ Mn(1)-Sn(4) & 2.800(2) & Sn(4)-Sn(7) & 3.100(1) \times 2 \\ Mn(1)-Sn(4) & 2.800(2) & Sn(6)-Sn(6) & 2.980(1) \times 2 \\ Mn(1)-Sn(3) & 2.810(2) & Sn(6)-Sn(6) & 2.980(1) \times 2 \\ Mn(1)-Sn(3) & 2.810(2) & Sn(6)-Sn(6) & 3.086(2) \\ Mn(1)-Mn(1) & 2.915(3) & Sn(7)-Sn(7) & 3.001(2) \\ Sn(1)-Sn(7) & 3.001(1) \times 2 & Sn(7)-Sn(8) & 3.040(1) \\ Sn(2)-Sn(7) & 3.034(1) \times 2 & Sn(7)-Sn(8) & 3.130(1) \\ \hline \begin{array}{c} 2 \\ Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(5) & 3.209(1) \\ Tm(1)-Sn(6) & 3.2014(7) \times 2 & Tm(4)-Sn(6) & 3.2162(7) \times 2 \\ Tm(1)-Sn(1) & 3.2762(4) \times 2 & Tm(4)-Sn(6) & 3.2162(7) \times 2 \\ Tm(1)-Sn(4) & 3.1113(9) & Tm(5)-Sn(3) & 2.9973(9) \\ Tm(2)-Sn(6) & 3.1218(7) \times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(6) & 3.2128(7) \times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(6) & 3.2128(7) \times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(6) & 3.2128(7) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2128(7) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2128(7) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2128(7) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tm(1)-Sn(1)                          | $3.299(1) \times 2$                         | Tm(4)-Mn(1)                                   | $3.354(2) \times 2$                        |
| $\begin{array}{cccccccc} Tm(2)-Sn(8) & 3.012(1) & Tm(5)-Sn(3) & 3.007(2) \\ Tm(2)-Sn(4) & 3.132(2) & Tm(5)-Sn(8) & 3.261(2) \\ Tm(2)-Sn(6) & 3.130(1) \times 2 & Tm(5)-Sn(8) & 3.261(2) \\ Tm(2)-Sn(3) & 3.299(1) \times 2 & Tm(5)-Sn(8) & 3.352(1) \times 2 \\ Tm(2)-Sn(7) & 3.617(1) \times 2 & Tm(6)-Sn(5) & 2.951(2) \\ Tm(3)-Sn(2) & 3.008(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(1) & 3.056(1) & Tm(6)-Sn(4) & 2.990(1) \\ Tm(3)-Sn(3) & 3.117(1) & Tm(6)-Sn(1) & 3.2360(1) \\ Tm(3)-Sn(3) & 3.117(1) & Tm(6)-Sn(1) & 3.2360(1) \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(1) & 3.2360(1) \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(1) & 3.2360(1) \\ Tm(3)-Sn(4) & 3.286(1) \times 2 & Tm(6)-Sn(1) & 2.924(2) \\ Mn(1)-Sn(2) & 2.747(2) & Sn(3)-Sn(5) & 2.924(2) \\ Mn(1)-Sn(4) & 2.800(2) & Sn(4)-Sn(7) & 3.0001(1) \times 2 \\ Mn(1)-Sn(4) & 2.800(2) & Sn(6)-Sn(6) & 2.976(2) \\ Mn(1)-Sn(3) & 2.810(2) & Sn(6)-Sn(6) & 2.976(2) \\ Mn(1)-Sn(3) & 2.810(2) & Sn(6)-Sn(6) & 3.086(2) \\ Mn(1)-Mn(1) & 3.147(3) & Sn(7)-Sn(7) & 3.001(2) \\ Sn(1)-Sn(7) & 3.001(1) \times 2 & Sn(7)-Sn(8) & 3.040(1) \\ Sn(2)-Sn(7) & 3.034(1) \times 2 & Sn(7)-Sn(8) & 3.130(1) \\ \hline 2 \\ Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(5) & 3.209(1) \\ Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(5) & 3.209(1) \\ Tm(1)-Sn(3) & 3.2014(7) \times 2 & Tm(4)-Sn(6) & 3.2162(7) \times 2 \\ Tm(1)-Sn(4) & 3.1114(9) & Tm(4)-Sn(5) & 3.209(1) \\ Tm(1)-Sn(3) & 3.0204(7) \times 2 & Tm(4)-Sn(6) & 3.2162(7) \times 2 \\ Tm(1)-Sn(4) & 3.1113(9) & Tm(4)-Sn(6) & 3.2162(7) \times 2 \\ Tm(1)-Sn(4) & 3.1113(9) & Tm(5)-Sn(3) & 2.973(9) \\ Tm(2)-Sn(8) & 3.0050(9) & Tm(5)-Sn(3) & 2.9973(9) \\ Tm(2)-Sn(6) & 3.218(7) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2124(4) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2124(4) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2124(4) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2124(4) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2124(4) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2124(4) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2124(4) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6) & 3.2224(4) \times 2 & Tm(5)-Sn(8) & 3.2254(4) \times 2 \\ Tm(2)-Sn(6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tm(1)-Mn(1)                          | $3.379(2) \times 2$                         | Tm(4)-Sn(6)                                   | $3.385(1) \times 2$                        |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(2)-Sn(8)                          | 3.012(1)                                    | Tm(5)-Sn(3)                                   | 3.007(2)                                   |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(2)-Sn(4)                          | 3.132(2)                                    | Tm(5)-Sn(1)                                   | 3.011(2)                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(2)-Sn(6)                          | $3.130(1) \times 2$                         | Tm(5)-Sn(8)                                   | 3.261(2)                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(2)-Mn(1)                          | $3.167(2) \times 2$                         | Tm(5) - Sn(6)                                 | $3.301(1) \times 2$                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Im(2) - Sn(3)                        | $3.299(1) \times 2$                         | Im(5)-Sn(8)                                   | $3.352(1) \times 2$                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Im(2) - Sn(7)                        | $3.617(1) \times 2$                         | $\operatorname{Im}(6) - \operatorname{Sn}(5)$ | 2.951(2)                                   |
| $\begin{array}{ccccccc} \mathrm{Im}(6) & \mathrm{S}, \mathrm{IO}(1) & \mathrm{Im}(6) & \mathrm{S}, \mathrm{IO}(1) \times 2 \\ \mathrm{Tm}(3) - \mathrm{Sn}(6) & \mathrm{3}, \mathrm{106}(1) \times 2 & \mathrm{Tm}(6) - \mathrm{Sn}(1) & \mathrm{3}, \mathrm{2360}(1) \\ \mathrm{Tm}(3) - \mathrm{Sn}(3) & \mathrm{3}, \mathrm{117}(1) & \mathrm{Tm}(6) - \mathrm{Sn}(1) & \mathrm{3}, \mathrm{2360}(1) \\ \mathrm{Tm}(3) - \mathrm{Sn}(4) & \mathrm{3}, \mathrm{286}(1) \times 2 & \mathrm{Tm}(6) - \mathrm{Sn}(1) & \mathrm{C2}) \times 2 \\ \mathrm{Tm}(3) - \mathrm{Sn}(4) & \mathrm{3}, \mathrm{286}(1) \times 2 & \mathrm{Tm}(6) - \mathrm{Mn}(1) & \mathrm{C2}) \times 2 \\ \mathrm{Tm}(3) - \mathrm{Sn}(4) & \mathrm{3}, \mathrm{286}(1) \times 2 & \mathrm{Tm}(6) - \mathrm{Sn}(1) & \mathrm{2}, \mathrm{294}(2) \\ \mathrm{Mn}(1) - \mathrm{Sn}(2) & \mathrm{2}, 747(2) & \mathrm{Sn}(3) - \mathrm{Sn}(5) & \mathrm{2}, 924(2) \\ \mathrm{Mn}(1) - \mathrm{Sn}(4) & \mathrm{2}, \mathrm{800}(2) & \mathrm{Sn}(4) - \mathrm{Sn}(7) & \mathrm{2}, 908(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sn}(4) & \mathrm{2}, \mathrm{800}(2) & \mathrm{Sn}(4) - \mathrm{Sn}(7) & \mathrm{3}, 100(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sn}(4) & \mathrm{2}, \mathrm{295}(2) & \mathrm{Sn}(5) - \mathrm{Sn}(6) & \mathrm{2}, 976(2) \\ \mathrm{Mn}(1) - \mathrm{Sn}(3) & \mathrm{2}, \mathrm{810}(2) & \mathrm{Sn}(6) - \mathrm{Sn}(6) & \mathrm{3}, 086(2) \\ \mathrm{Mn}(1) - \mathrm{Mn}(1) & \mathrm{2}, \mathrm{915}(3) & \mathrm{Sn}(7) - \mathrm{Sn}(7) & \mathrm{3}, 001(2) \\ \mathrm{Mn}(1) - \mathrm{Mn}(1) & \mathrm{3}, 147(3) & \mathrm{Sn}(7) - \mathrm{Sn}(7) & \mathrm{3}, 001(2) \\ \mathrm{Sn}(2) - \mathrm{Sn}(7) & \mathrm{3}, 001(1) \times 2 & \mathrm{Sn}(7) - \mathrm{Sn}(8) & \mathrm{3}, 130(1) \\ 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IIII(3) - SII(2)<br>Trac(2) - Sra(1) | 3.008(1)                                    | TIII(6) - SII(4)<br>Trr(6) - Sr(6)            | 2.990(1)                                   |
| $\begin{array}{ccccccc} \mathrm{Int}(5) - \mathrm{Sit}(6) & 3.106(1) \times 2 & \mathrm{Int}(6) - \mathrm{Sit}(1) & 3.2300(1) \\ \mathrm{Tm}(3) - \mathrm{Sit}(3) & 3.117(1) & \mathrm{Tm}(6) - \mathrm{Sit}(2) & 3.291(1) \times 2 \\ \mathrm{Tm}(3) - \mathrm{Sit}(4) & 3.286(1) \times 2 & \mathrm{Tm}(6) - \mathrm{Mi}(1) & \mathrm{C}(2) \times 2 \\ \mathrm{Tm}(3) - \mathrm{Mi}(1) & 3.420(2) \times 2 & \mathrm{Sit}(3) - \mathrm{Sit}(5) & 2.924(2) \\ \mathrm{Mn}(1) - \mathrm{Sit}(2) & 2.747(2) & \mathrm{Sit}(3) - \mathrm{Sit}(7) & 2.908(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sit}(4) & 2.800(2) & \mathrm{Sit}(4) - \mathrm{Sit}(7) & 3.100(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sit}(4) & 2.800(2) & \mathrm{Sit}(4) - \mathrm{Sit}(7) & 3.100(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sit}(1) & 2.795(2) & \mathrm{Sit}(5) - \mathrm{Sit}(6) & 2.976(2) \\ \mathrm{Mn}(1) - \mathrm{Sit}(3) & 2.810(2) & \mathrm{Sit}(6) - \mathrm{Sit}(6) & 3.086(2) \\ \mathrm{Mn}(1) - \mathrm{Mi}(1) & 2.915(3) & \mathrm{Sit}(7) - \mathrm{Sit}(7) & 3.001(2) \\ \mathrm{Mn}(1) - \mathrm{Mn}(1) & 3.147(3) & \mathrm{Sit}(7) - \mathrm{Sit}(7) & 3.001(2) \\ \mathrm{Sit}(1) - \mathrm{Sit}(7) & 3.001(1) \times 2 & \mathrm{Sit}(7) - \mathrm{Sit}(8) & 3.040(1) \\ \mathrm{Sit}(2) - \mathrm{Sit}(7) & 3.001(1) \times 2 & \mathrm{Sit}(7) - \mathrm{Sit}(8) & 3.040(1) \\ \mathrm{Sit}(2) - \mathrm{Sit}(7) & 3.001(1) \times 2 & \mathrm{Sit}(7) - \mathrm{Sit}(8) & 3.040(1) \\ \mathrm{Sit}(2) - \mathrm{Sit}(7) & 3.034(1) \times 2 & \mathrm{Sit}(7) - \mathrm{Sit}(8) & 3.130(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IIII(3) - SII(1)<br>Tm(2) - Sn(6)    | 3.050(1)                                    | Tm(6) - Sn(6)                                 | $3.107(1) \times 2$                        |
| $\begin{array}{ccccccc} \mathrm{Im}(3){-}\mathrm{Sn}(3) & \mathrm{S},117(1) & \mathrm{Im}(0){-}\mathrm{Sn}(2) & \mathrm{S},291(1)\times 2\\ \mathrm{Im}(3){-}\mathrm{Sn}(4) & \mathrm{3},286(1)\times 2 & \mathrm{Im}(6){-}\mathrm{Mn}(1) & \mathrm{C}(2)\times 2\\ \mathrm{Im}(3){-}\mathrm{Sn}(4) & \mathrm{3},246(1)\times 2 & \mathrm{Sn}(3){-}\mathrm{Sn}(5) & 2.924(2)\\ \mathrm{Mn}(1){-}\mathrm{Sn}(2) & 2.747(2) & \mathrm{Sn}(3){-}\mathrm{Sn}(7) & 2.908(1)\times 2\\ \mathrm{Mn}(1){-}\mathrm{Sn}(4) & 2.800(2) & \mathrm{Sn}(4){-}\mathrm{Sn}(7) & 3.100(1)\times 2\\ \mathrm{Mn}(1){-}\mathrm{Sn}(4) & 2.795(2) & \mathrm{Sn}(5){-}\mathrm{Sn}(6) & 2.980(1)\times 2\\ \mathrm{Mn}(1){-}\mathrm{Sn}(5) & 2.804(2) & \mathrm{Sn}(6){-}\mathrm{Sn}(6) & 2.976(2)\\ \mathrm{Mn}(1){-}\mathrm{Sn}(5) & 2.804(2) & \mathrm{Sn}(6){-}\mathrm{Sn}(6) & 3.086(2)\\ \mathrm{Mn}(1){-}\mathrm{Sn}(5) & 2.804(2) & \mathrm{Sn}(6){-}\mathrm{Sn}(6) & 3.086(2)\\ \mathrm{Mn}(1){-}\mathrm{Sn}(3) & 2.810(2) & \mathrm{Sn}(6){-}\mathrm{Sn}(6) & 3.086(2)\\ \mathrm{Mn}(1){-}\mathrm{Mn}(1) & 2.915(3) & \mathrm{Sn}(7){-}\mathrm{Sn}(7) & 3.001(2)\\ \mathrm{Mn}(1){-}\mathrm{Mn}(1) & 3.147(3) & \mathrm{Sn}(7){-}\mathrm{Sn}(7) & 3.001(2)\\ \mathrm{Sn}(1){-}\mathrm{Sn}(7) & 3.001(1)\times 2 & \mathrm{Sn}(7){-}\mathrm{Sn}(8) & 3.040(1)\\ \mathrm{Sn}(2){-}\mathrm{Sn}(7) & 3.001(1)\times 2 & \mathrm{Sn}(7){-}\mathrm{Sn}(8) & 3.130(1)\\ \hline 2\\ T\\ T\\ T\\ T\\ T\\ 10{-}\mathrm{Sn}(4) & 3.1117(9) & \mathrm{Tm}(4){-}\mathrm{Sn}(5) & 3.209(1)\\ \mathrm{Tm}(1){-}\mathrm{Sn}(8) & 3.2014(7)\times 2 & \mathrm{Tm}(4){-}\mathrm{Sn}(5) & 3.209(1)\\ \mathrm{Tm}(1){-}\mathrm{Sn}(8) & 3.2014(7)\times 2 & \mathrm{Tm}(4){-}\mathrm{Sn}(6) & 3.2162(7)\times 2\\ \mathrm{Tm}(1){-}\mathrm{Sn}(1) & 3.2762(4)\times 2 & \mathrm{Tm}(4){-}\mathrm{Sn}(6) & 3.3968(7)\times 2\\ \mathrm{Tm}(1){-}\mathrm{Sn}(1) & 3.2762(4)\times 2 & \mathrm{Tm}(4){-}\mathrm{Sn}(6) & 3.3698(7)\times 2\\ \mathrm{Tm}(2){-}\mathrm{Sn}(8) & 3.0050(9) & \mathrm{Tm}(5){-}\mathrm{Sn}(3) & 2.973(9)\\ \mathrm{Tm}(2){-}\mathrm{Sn}(4) & 3.1113(9) & \mathrm{Tm}(5){-}\mathrm{Sn}(3) & 3.2254(9)\\ \mathrm{Tm}(2){-}\mathrm{Sn}(4) & 3.1218(7)\times 2 & \mathrm{Tm}(5){-}\mathrm{Sn}(8) & 3.2254(9)\\ \mathrm{Tm}(2){-}\mathrm{Sn}(6) & 3.2214(4)\times 2 & \mathrm{Tm}(5){-}\mathrm{Sn}(8) & 3.2254(4)\times 2\\ \mathrm{Tm}(2){-}\mathrm{Sn}(6) & 3.22724(4)\times 2 & \mathrm{Tm}(5){-}\mathrm{Sn}(8) & 3.2254(4)\times 2\\ \mathrm{Tm}(2){-}\mathrm{Sn}(6) & 3.2274(4)\times 2 & \mathrm{Tm}(5){-}\mathrm{Sn}(8) & 3.2254(4)\times 2\\ \end{array}$                                                                                                                                                                                                                                                                                                                             | Tm(2) - Sn(0)                        | $5.100(1) \times 2$<br>2.117(1)             | TIII(0) - SII(1)<br>Tm(6) - Sn(2)             | 3.2300(1)<br>$2.201(1) \times 2$           |
| $\begin{array}{cccc} \text{Tm}(3) & \text{Sn}(4) & \text{S.250}(1) & 2 & \text{Sn}(3) - \text{Sn}(5) & 2.924(2) \\ \text{Mn}(1)-\text{Sn}(2) & 2.747(2) & \text{Sn}(3)-\text{Sn}(5) & 2.924(2) \\ \text{Mn}(1)-\text{Sn}(2) & 2.747(2) & \text{Sn}(3)-\text{Sn}(7) & 2.908(1) \times 2 \\ \text{Mn}(1)-\text{Sn}(4) & 2.800(2) & \text{Sn}(4)-\text{Sn}(7) & 3.100(1) \times 2 \\ \text{Mn}(1)-\text{Sn}(1) & 2.795(2) & \text{Sn}(5)-\text{Sn}(6) & 2.980(1) \times 2 \\ \text{Mn}(1)-\text{Sn}(5) & 2.804(2) & \text{Sn}(6)-\text{Sn}(6) & 2.976(2) \\ \text{Mn}(1)-\text{Sn}(3) & 2.810(2) & \text{Sn}(6)-\text{Sn}(6) & 3.086(2) \\ \text{Mn}(1)-\text{Mn}(1) & 3.147(3) & \text{Sn}(7)-\text{Sn}(7) & 3.001(2) \\ \text{Mn}(1)-\text{Mn}(1) & 3.147(3) & \text{Sn}(7)-\text{Sn}(7) & 3.001(2) \\ \text{Sn}(1)-\text{Sn}(7) & 3.001(1) \times 2 & \text{Sn}(7)-\text{Sn}(8) & 3.040(1) \\ \text{Sn}(2)-\text{Sn}(7) & 3.001(1) \times 2 & \text{Sn}(7)-\text{Sn}(8) & 3.040(1) \\ \text{Sn}(2)-\text{Sn}(7) & 3.034(1) \times 2 & \text{Sn}(7)-\text{Sn}(8) & 3.130(1) \\ \hline 2 \\ \hline Tm}(1)-\text{Sn}(8) & 3.1144(9) & \text{Tm}(4)-\text{Sn}(5) & 3.209(1) \\ \text{Tm}(1)-\text{Sn}(8) & 3.2014(7) \times 2 & \text{Tm}(4)-\text{Sn}(6) & 3.2162(7) \times 2 \\ \text{Tm}(1)-\text{Sn}(6) & 3.2014(7) \times 2 & \text{Tm}(4)-\text{Sn}(6) & 3.2616(7) \times 2 \\ \text{Tm}(1)-\text{Sn}(1) & 3.2762(4) \times 2 & \text{Tm}(4)-\text{Sn}(6) & 3.3698(7) \times 2 \\ \text{Tm}(2)-\text{Sn}(8) & 3.0050(9) & \text{Tm}(5)-\text{Sn}(1) & 2.9973(9) \\ \text{Tm}(2)-\text{Sn}(4) & 3.1113(9) & \text{Tm}(5)-\text{Sn}(8) & 3.2254(9) \\ \text{Tm}(2)-\text{Sn}(6) & 3.22724(4) \times 2 & \text{Tm}(5)-\text{Sn}(8) & 3.2254(9) \\ \text{Tm}(2)-\text{Sn}(6) & 3.2724(4) \times 2 & \text{Tm}(5)-\text{Sn}(8) & 3.2254(4) \times 2 \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tm(3) - Sm(3)                        | 3.117(1)<br>$3.286(1) \times 2$             | Tm(0) - 3m(2)<br>Tm(6) - Mn(1)                | $5.291(1) \times 2$                        |
| $\begin{array}{ccccccc} \mathrm{Mn}(1) & \mathrm{Sn}(2) & \mathrm{Sn}(2) & \mathrm{Sn}(3) & \mathrm{Sn}(3) & \mathrm{Sn}(2) & \mathrm{Sn}(2) \\ \mathrm{Mn}(1) - \mathrm{Sn}(2) & 2.747(2) & \mathrm{Sn}(3) - \mathrm{Sn}(7) & 2.908(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sn}(4) & 2.800(2) & \mathrm{Sn}(4) - \mathrm{Sn}(7) & 3.100(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sn}(1) & 2.795(2) & \mathrm{Sn}(5) - \mathrm{Sn}(6) & 2.980(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sn}(5) & 2.804(2) & \mathrm{Sn}(6) - \mathrm{Sn}(6) & 2.976(2) \\ \mathrm{Mn}(1) - \mathrm{Sn}(3) & 2.810(2) & \mathrm{Sn}(6) - \mathrm{Sn}(6) & 3.086(2) \\ \mathrm{Mn}(1) - \mathrm{Mn}(1) & 2.915(3) & \mathrm{Sn}(7) - \mathrm{Sn}(7) & 3.001(2) \\ \mathrm{Mn}(1) - \mathrm{Mn}(1) & 2.915(3) & \mathrm{Sn}(7) - \mathrm{Sn}(7) & 3.061(2) \\ \mathrm{Sn}(1) - \mathrm{Sn}(7) & 3.001(1) \times 2 & \mathrm{Sn}(7) - \mathrm{Sn}(8) & 3.040(1) \\ \mathrm{Sn}(2) - \mathrm{Sn}(7) & 3.001(1) \times 2 & \mathrm{Sn}(7) - \mathrm{Sn}(8) & 3.040(1) \\ \mathrm{Sn}(2) - \mathrm{Sn}(7) & 3.001(1) \times 2 & \mathrm{Sn}(7) - \mathrm{Sn}(8) & 3.130(1) \\ \hline 2 \\ Tm(1) - \mathrm{Sn}(4) & 3.1117(9) & Tm(4) - \mathrm{Sn}(5) & 3.209(1) \\ Tm(1) - \mathrm{Sn}(8) & 3.1144(9) & Tm(4) - \mathrm{Sn}(5) & 3.209(1) \\ Tm(1) - \mathrm{Sn}(8) & 3.2014(7) \times 2 & Tm(4) - \mathrm{Sn}(6) & 3.2162(7) \times 2 \\ Tm(1) - \mathrm{Sn}(6) & 3.2014(7) \times 2 & Tm(4) - \mathrm{Sn}(6) & 3.2162(7) \times 2 \\ Tm(1) - \mathrm{Sn}(2) & 3.2528(9) & Tm(4) - \mathrm{Sn}(5) & 3.2576(5) \times 2 \\ Tm(1) - \mathrm{Sn}(1) & 3.2762(4) \times 2 & Tm(4) - \mathrm{Mn}(1) & 3.339(1) \times 2 \\ Tm(2) - \mathrm{Sn}(8) & 3.0050(9) & Tm(5) - \mathrm{Sn}(3) & 2.9973(9) \\ Tm(2) - \mathrm{Sn}(4) & 3.1113(9) & Tm(5) - \mathrm{Sn}(8) & 3.2254(9) \\ Tm(2) - \mathrm{Sn}(6) & 3.1218(7) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(9) \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}($                                                                                                   | Tm(3) - Mn(1)                        | $3.280(1) \times 2$<br>$3.420(2) \times 2$  | Sn(3) - Sn(5)                                 | $2924(2) \times 2$                         |
| $\begin{array}{ccccccc} \mathrm{Mn}(1) - \mathrm{Sn}(4) & 2.800(2) & \mathrm{Sn}(4) - \mathrm{Sn}(7) & 3.100(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sn}(1) & 2.795(2) & \mathrm{Sn}(5) - \mathrm{Sn}(6) & 2.980(1) \times 2 \\ \mathrm{Mn}(1) - \mathrm{Sn}(5) & 2.804(2) & \mathrm{Sn}(6) - \mathrm{Sn}(6) & 2.976(2) \\ \mathrm{Mn}(1) - \mathrm{Sn}(3) & 2.810(2) & \mathrm{Sn}(6) - \mathrm{Sn}(6) & 3.086(2) \\ \mathrm{Mn}(1) - \mathrm{Mn}(1) & 2.915(3) & \mathrm{Sn}(7) - \mathrm{Sn}(7) & 3.001(2) \\ \mathrm{Mn}(1) - \mathrm{Mn}(1) & 3.147(3) & \mathrm{Sn}(7) - \mathrm{Sn}(7) & 3.001(2) \\ \mathrm{Mn}(1) - \mathrm{Mn}(1) & 3.147(3) & \mathrm{Sn}(7) - \mathrm{Sn}(7) & 3.061(2) \\ \mathrm{Sn}(1) - \mathrm{Sn}(7) & 3.001(1) \times 2 & \mathrm{Sn}(7) - \mathrm{Sn}(8) & 3.040(1) \\ \mathrm{Sn}(2) - \mathrm{Sn}(7) & 3.034(1) \times 2 & \mathrm{Sn}(7) - \mathrm{Sn}(8) & 3.130(1) \\ \hline 2 \\ Tm(1) - \mathrm{Sn}(4) & 3.1117(9) & Tm(4) - \mathrm{Sn}(5) & 3.209(1) \\ Tm(1) - \mathrm{Sn}(6) & 3.2014(7) \times 2 & Tm(4) - \mathrm{Sn}(6) & 3.2162(7) \times 2 \\ Tm(1) - \mathrm{Sn}(6) & 3.2014(7) \times 2 & Tm(4) - \mathrm{Sn}(6) & 3.2162(7) \times 2 \\ Tm(1) - \mathrm{Sn}(2) & 3.2528(9) & Tm(4) - \mathrm{Sn}(5) & 3.2576(5) \times 2 \\ Tm(1) - \mathrm{Sn}(1) & 3.2762(4) \times 2 & Tm(4) - \mathrm{Mn}(1) & 3.339(1) \times 2 \\ Tm(1) - \mathrm{Sn}(4) & 3.1113(9) & Tm(5) - \mathrm{Sn}(3) & 2.9973(9) \\ Tm(2) - \mathrm{Sn}(4) & 3.1113(9) & Tm(5) - \mathrm{Sn}(8) & 3.2254(9) \\ Tm(2) - \mathrm{Sn}(6) & 3.21218(7) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(9) \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ Tm(2) - \mathrm{Sn}(6) & 3.2724(4) \times 2 & Tm(5) - \mathrm{Sn}(8) & 3.2254(4) \times 2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mn(1) - Sn(2)                        | $2.420(2) \times 2$                         | Sn(3) - Sn(7)                                 | 2.524(2)<br>2 908(1) $\times$ 2            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mn(1)-Sn(4)                          | 2.717(2)<br>2.800(2)                        | Sn(4) - Sn(7)                                 | $3100(1) \times 2$                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mn(1)-Sn(1)                          | 2.795(2)                                    | Sn(5) - Sn(6)                                 | $2.980(1) \times 2$                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mn(1)-Sn(5)                          | 2.804(2)                                    | Sn(6)-Sn(6)                                   | 2.976(2)                                   |
| $\begin{array}{cccccccc} Mn(1)-Mn(1) & 2.915(3) & Sn(7)-Sn(7) & 3.001(2) \\ Mn(1)-Mn(1) & 3.147(3) & Sn(7)-Sn(7) & 3.061(2) \\ Sn(1)-Sn(7) & 3.001(1)\times 2 & Sn(7)-Sn(8) & 3.040(1) \\ Sn(2)-Sn(7) & 3.034(1)\times 2 & Sn(7)-Sn(8) & 3.130(1) \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mn(1)-Sn(3)                          | 2.810(2)                                    | Sn(6) - Sn(6)                                 | 3.086(2)                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mn(1)-Mn(1)                          | 2.915(3)                                    | Sn(7)-Sn(7)                                   | 3.001(2)                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mn(1)-Mn(1)                          | 3.147(3)                                    | Sn(7)-Sn(7)                                   | 3.061(2)                                   |
| $\begin{array}{c ccccc} Sn(2)-Sn(7) & 3.034(1)\times 2 & Sn(7)-Sn(8) & 3.130(1) \\ \hline \textbf{2} \\ Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(2) & 3.1962(9) \\ Tm(1)-Sn(8) & 3.1144(9) & Tm(4)-Sn(5) & 3.209(1) \\ Tm(1)-Sn(6) & 3.2014(7)\times 2 & Tm(4)-Sn(6) & 3.2162(7)\times 2 \\ Tm(1)-Sn(2) & 3.2528(9) & Tm(4)-Sn(5) & 3.2576(5)\times 2 \\ Tm(1)-Sn(1) & 3.2762(4)\times 2 & Tm(4)-Mn(1) & 3.339(1)\times 2 \\ Tm(1)-Mn(1) & 3.373(1)\times 2 & Tm(4)-Sn(6) & 3.3698(7)\times 2 \\ Tm(2)-Sn(8) & 3.0050(9) & Tm(5)-Sn(3) & 2.9973(9) \\ Tm(2)-Sn(6) & 3.1218(7)\times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Mn(1) & 3.572(4)\times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(3) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ Tm(2)-Sn(6) & 3.1218(7)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ Tm(2)-Sn(6) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sn(1)-Sn(7)                          | $3.001(1) \times 2$                         | Sn(7)-Sn(8)                                   | 3.040(1)                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sn(2)-Sn(7)                          | 3.034(1) × 2                                | Sn(7)-Sn(8)                                   | 3.130(1)                                   |
| $\begin{array}{cccccc} Tm(1)-Sn(4) & 3.1117(9) & Tm(4)-Sn(2) & 3.1962(9) \\ Tm(1)-Sn(8) & 3.1144(9) & Tm(4)-Sn(5) & 3.209(1) \\ Tm(1)-Sn(6) & 3.2014(7)\times2 & Tm(4)-Sn(6) & 3.2162(7)\times2 \\ Tm(1)-Sn(2) & 3.2528(9) & Tm(4)-Sn(5) & 3.2576(5)\times2 \\ Tm(1)-Sn(1) & 3.2762(4)\times2 & Tm(4)-Mn(1) & 3.339(1)\times2 \\ Tm(1)-Mn(1) & 3.373(1)\times2 & Tm(4)-Sn(6) & 3.3698(7)\times2 \\ Tm(2)-Sn(8) & 3.0050(9) & Tm(5)-Sn(3) & 2.9973(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(1) & 2.9989(9) \\ Tm(2)-Sn(6) & 3.1218(7)\times2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Mn(1) & 3.151(1)\times2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(3) & 3.2724(4)\times2 & Tm(5)-Sn(8) & 3.3254(4)\times2 \\ Tm(2)-Sn(6) & 3.2724(4)\times2 & Tm(5)-Sn(8) & 3.3254(4)\times2 \\ Tm(2)-Sn(6) & 3.2724(4)\times2 & Tm(5)-Sn(8) & 3.3254(4)\times2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                    |                                             |                                               |                                            |
| $\begin{array}{cccccc} Tm(1)-Sn(8) & 3.1144(9) & Tm(4)-Sn(5) & 3.209(1) \\ Tm(1)-Sn(6) & 3.2014(7)\times 2 & Tm(4)-Sn(6) & 3.2162(7)\times 2 \\ Tm(1)-Sn(2) & 3.2528(9) & Tm(4)-Sn(5) & 3.2576(5)\times 2 \\ Tm(1)-Sn(1) & 3.2762(4)\times 2 & Tm(4)-Mn(1) & 3.339(1)\times 2 \\ Tm(1)-Mn(1) & 3.373(1)\times 2 & Tm(4)-Sn(6) & 3.3698(7)\times 2 \\ Tm(2)-Sn(8) & 3.0050(9) & Tm(5)-Sn(3) & 2.9973(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(1) & 2.9989(9) \\ Tm(2)-Sn(6) & 3.1218(7)\times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Mn(1) & 3.151(1)\times 2 & Tm(5)-Sn(8) & 3.2254(4)\times 2 \\ Tm(2)-Sn(3) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ Tm(2)-Sn(6) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ Tm(2)-Sn(6) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tm(1)-Sn(4)                          | 3.1117(9)                                   | Tm(4)-Sn(2)                                   | 3.1962(9)                                  |
| $\begin{array}{ccccc} Tm(1)-Sn(6) & 3.2014(7)\times 2 & Tm(4)-Sn(6) & 3.2162(7)\times 2 \\ Tm(1)-Sn(2) & 3.2528(9) & Tm(4)-Sn(5) & 3.2576(5)\times 2 \\ Tm(1)-Sn(1) & 3.2762(4)\times 2 & Tm(4)-Mn(1) & 3.339(1)\times 2 \\ Tm(1)-Mn(1) & 3.373(1)\times 2 & Tm(4)-Sn(6) & 3.3698(7)\times 2 \\ Tm(2)-Sn(8) & 3.0050(9) & Tm(5)-Sn(3) & 2.9973(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(1) & 2.9989(9) \\ Tm(2)-Sn(6) & 3.1218(7)\times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Mn(1) & 3.151(1)\times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Sn(3) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ Tm(2)-Sn(6) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tm(1)-Sn(8)                          | 3.1144(9)                                   | Tm(4)-Sn(5)                                   | 3.209(1)                                   |
| $\begin{array}{ccccc} Tm(1)-Sn(2) & 3.2528(9) & Tm(4)-Sn(5) & 3.2576(5)\times 2\\ Tm(1)-Sn(1) & 3.2762(4)\times 2 & Tm(4)-Mn(1) & 3.339(1)\times 2\\ Tm(1)-Mn(1) & 3.373(1)\times 2 & Tm(4)-Sn(6) & 3.3698(7)\times 2\\ Tm(2)-Sn(8) & 3.0050(9) & Tm(5)-Sn(3) & 2.9973(9)\\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(1) & 2.9989(9)\\ Tm(2)-Sn(6) & 3.1218(7)\times 2 & Tm(5)-Sn(8) & 3.2254(9)\\ Tm(2)-Mn(1) & 3.151(1)\times 2 & Tm(5)-Sn(6) & 3.2953(7)\times 2\\ Tm(2)-Sn(3) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2\\ Tm(2)-Sn(6) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2\\ Tm(2)-Sn(6) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tm(1)-Sn(6)                          | $3.2014(7) \times 2$                        | Tm(4)-Sn(6)                                   | $3.2162(7) \times 2$                       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(1)-Sn(2)                          | 3.2528(9)                                   | Tm(4)-Sn(5)                                   | $3.2576(5) \times 2$                       |
| $\begin{array}{c ccccc} Tm(1)-Mn(1) & 3.373(1)\times 2 & Tm(4)-Sn(6) & 3.3698(7)\times 2 \\ Tm(2)-Sn(8) & 3.0050(9) & Tm(5)-Sn(3) & 2.9973(9) \\ Tm(2)-Sn(4) & 3.1113(9) & Tm(5)-Sn(1) & 2.9989(9) \\ Tm(2)-Sn(6) & 3.1218(7)\times 2 & Tm(5)-Sn(8) & 3.2254(9) \\ Tm(2)-Mn(1) & 3.151(1)\times 2 & Tm(5)-Sn(6) & 3.2953(7)\times 2 \\ Tm(2)-Sn(3) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ Tm(2)-Sn(6) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tm(1)-Sn(1)                          | $3.2762(4) \times 2$                        | Tm(4)-Mn(1)                                   | $3.339(1) \times 2$                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(1)-Mn(1)                          | $3.373(1) \times 2$                         | Tm(4)-Sn(6)                                   | $3.3698(7) \times 2$                       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(2)-Sn(8)                          | 3.0050(9)                                   | Tm(5)-Sn(3)                                   | 2.9973(9)                                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(2)-Sn(4)                          | 3.1113(9)                                   | Tm(5)-Sn(1)                                   | 2.9989(9)                                  |
| $\begin{array}{cccc} Tm(2)-Mn(1) & 3.151(1)\times 2 & Tm(5)-Sn(6) & 3.2953(7)\times 2 \\ Tm(2)-Sn(3) & 3.2724(4)\times 2 & Tm(5)-Sn(8) & 3.3254(4)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 & Tm(6)-Sn(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6) & 2.502(6)\times 2 \\ Tm(6)-Sn(6)\times 2 & Tm(6)-Sn(6)\times 2 \\ Tm(6)-Sn(6)\times 2 & Tm(6)-Sn(6)\times 2 \\ Tm(6)-Sn(6)\times 2 & Tm(6)-Sn(6)\times 2 \\ Tm(6)-Sn(6)\times 2 \\ Tm(6)-Sn(6)\times 2 & Tm(6)-Sn(6)\times 2 \\ Tm(6)-Sn(6)\times 2 \\ Tm(6)-Sn(6$                                                                                                                                                                                                                                                                                                                                              | Tm(2)-Sn(6)                          | $3.1218(7) \times 2$                        | Tm(5)-Sn(8)                                   | 3.2254(9)                                  |
| $Tm(2)-Sn(3) \qquad 3.2724(4) \times 2 \qquad Tm(5)-Sn(8) \qquad 3.3254(4) \times 2 Tm(2) Sn(7) \qquad 2.5022(9) \qquad 2 \qquad Tm(6) Sn(7) \qquad 3.3254(4) \times 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tm(2)-Mn(1)                          | $3.151(1) \times 2$                         | Tm(5)-Sn(6)                                   | $3.2953(7) \times 2$                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tm(2)-Sn(3)                          | $3.2724(4) \times 2$                        | Tm(5)-Sn(8)                                   | $3.3254(4) \times 2$                       |
| Im(2) - Sn(7) 3.5832(8) × 2 $Im(6) - Sn(5)$ 2.952(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tm(2)-Sn(7)                          | $3.5832(8) \times 2$                        | Tm(6)-Sn(5)                                   | 2.952(1)                                   |
| Tm(3)-Sn(2) 3.0036(9) $Tm(6)-Sn(4)$ 2.9885(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tm(3)-Sn(2)                          | 3.0036(9)                                   | Tm(6)-Sn(4)                                   | 2.9885(9)                                  |
| Im(3)-Sn(1) 3.0590(9) $Im(6)-Sn(6)$ 3.1630(7) × 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Im(3) - Sn(1)                        | 3.0590(9)                                   | Im(6)-Sn(6)                                   | $3.1630(7) \times 2$                       |
| Im(3)-Sn(6) 3.1005(7)×2 $Im(6)-Sn(1)$ 3.2222(9)<br>Tm(2)-Sn(2) 2.1050(0) $Tm(6)-Sn(2)$ 2.2740(4) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Im(3) - Sn(6)<br>Tm(2) - Sn(6)       | $3.1005(7) \times 2$                        | Im(6) - Sn(1)<br>Tm(6) - Sn(2)                | 3.2222(9)                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIII(3) - SII(3)<br>Trac(2) - Sri(4) | 3.1059(9)                                   | III(0) - SII(2)<br>Trac(C) - Ma(1)            | $3.2740(4) \times 2$                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | III(3) - SII(4)<br>Tm(2) Mp(1)       | $3.2039(4) \times 2$<br>2.402(1) $\times 2$ | III(0) - IVII(1)<br>Sp(2), Sp(5)              | $3.205(1) \times 2$<br>2.005(1)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $M_{p}(1) S_{p}(2)$                  | $3.402(1) \times 2$<br>3.751(1)             | Sn(3) - Sn(3)                                 | 2.905(1)                                   |
| $\frac{1}{100} \frac{1}{100} \frac{1}$ | Mn(1)-Sn(2)                          | 2.731(1)<br>2.800(1)                        | Sn(4) - Sn(7)                                 | $2.0000(9) \times 2$<br>3.0780(9) $\sim 2$ |
| Mn(1) = Sn(1) 2795(1) Sn(5) = Sn(6) 2954(1) 2795(1) 2795(1) Sn(5) = Sn(6) 2954(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 2795(1) 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mn(1)-Sn(1)                          | 2.000(1)                                    | Sn(-5) - Sn(-7)                               | 2.954(1) > 2                               |
| Mn(1)-Sn(5) 2.753(1) $Sn(5)-Sn(6)$ 2.554(1) × 2<br>Mn(1)-Sn(5) 2.782(2) $Sn(6)-Sn(6)$ 2.9543(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mn(1)-Sn(5)                          | 2.782(2)                                    | Sn(6)-Sn(6)                                   | $2.9543(1) \times 2$                       |
| Mn(1)-Sn(3) 2.803(1) $Sn(6)-Sn(6)$ 3.059(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mn(1)-Sn(3)                          | 2.803(1)                                    | Sn(6)-Sn(6)                                   | 3 059(1)                                   |
| Mn(1)-Mn(1) 2.899(3) $Sn(7)-Sn(7)$ 2.967(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mn(1)-Mn(1)                          | 2.899(3)                                    | Sn(7) - Sn(7)                                 | 2.967(2)                                   |
| Mn(1)-Mn(1) 3.114(3) $Sn(7)-Sn(7)$ 3.046(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mn(1) - Mn(1)                        | 3.114(3)                                    | Sn(7) - Sn(7)                                 | 3.046(1)                                   |
| Sn(1)-Sn(7) 2.9712(9)×2 $Sn(7)-Sn(8)$ 3.0182(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sn(1)-Sn(7)                          | $2.9712(9) \times 2$                        | Sn(7) - Sn(8)                                 | 3.0182(9)                                  |
| $Sn(2)-Sn(7)$ $3.0124(9) \times 2$ $Sn(7)-Sn(8)$ $3.1085(9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sn(2)-Sn(7)                          | $3.0124(9) \times 2$                        | Sn(7) - Sn(8)                                 | 3.1085(9)                                  |

*b*-axis made by  $[Mn_4Sn_{16}]$  20-memebered rings, which are occupied by a mass of Tm atoms (Fig. 1a). Tm(1), Tm(3) and Tm(6) atoms are all surrounded by seven Sn atoms with distorted pentagonal bipyramid coordination geometries capped by two additional Mn(1) atoms, whereas Tm(5) atom has similar pentagonal bipyramidal coordination environment without capping Mn atoms. Tm(2) and Tm(4) atoms are both 10-coordinated by eight Sn atoms and two Mn atoms. The Tm–Mn and Tm–Sn distances are in the range of 3.167(2)-3.420(2) and 2.951(2)-3.617(1)Å, respectively, which are comparable with those in Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub> [39] and TmMn<sub>6</sub>Sn<sub>6</sub> [50]. The Lu–Mn and Lu–Sn distances fall in the range of 3.155(1)-3.409(1)

<sup>a</sup> U(eq) is defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

The 1D [Mn<sub>2</sub>Sn<sub>7</sub>] chains and [Sn<sub>3</sub>] double chains are further interconnected via Sn–Sn bonds (2.908(1)–3.100(1) Å) into a 3D [Mn<sub>2</sub>Sn<sub>10</sub>] ([MnSn<sub>5</sub>]) framework, forming large tunnels along the

| Table | 4 |
|-------|---|
|-------|---|

The bond distances (Å) in compounds 3 and 4.

| Bond                              | Distance (Å)                                 | Bond                             | Distance (Å)                               |
|-----------------------------------|----------------------------------------------|----------------------------------|--------------------------------------------|
| 3                                 |                                              |                                  |                                            |
| Lu(1)-Sn(4)                       | 3.0869(9)                                    | Lu(4)-Sn(2)                      | 3.158(1)                                   |
| Lu(1)-Sn(8)                       | 3.1042(9)                                    | Lu(4)-Sn(5)                      | 3.156(1)                                   |
| Lu(1)-Sn(6)                       | $3.1973(7) \times 2$                         | Lu(4)-Sn(6)                      | $3.2235(8) \times 2$                       |
| Lu(1)-Sn(2)                       | 3.2571(9)                                    | Lu(4)-Sn(5)                      | $3.2337(7) \times 2$                       |
| Lu(1)-Sn(1)                       | 3.2840(6) × 2                                | Lu(4)-Mn(1)                      | $3.309(1) \times 2$                        |
| Lu(1)-Mn(1)                       | $3.361(1) \times 2$                          | Lu(4)-Sn(6)                      | $3.4075(8) \times 2$                       |
| Lu(2)-Sn(8)                       | 3.0016(9)                                    | Lu(5)-Sn(3)                      | 2.987(1)                                   |
| Lu(2)-Sn(4)                       | 3.119(1)                                     | Lu(5)-Sn(1)                      | 2.993(1)                                   |
| Lu(2)-Sn(6)                       | $3.1147(7) \times 2$                         | Lu(5)-Sn(8)                      | 3.264(1)                                   |
| Lu(2)-Mn(1)                       | $3.155(1) \times 2$                          | Lu(5)-Sn(6)                      | $3.2880(8) \times 2$                       |
| Lu(2)-Sn(3)                       | $3.2846(6) \times 2$                         | Lu(5)-Sn(8)                      | $3.3417(6) \times 2$                       |
| Lu(2)-Sn(7)                       | $3.6024(8) \times 2$                         | Lu(6)-Sn(5)                      | 2.927(1)                                   |
| Lu(3)-Sn(2)                       | 2.994(1)                                     | Lu(6)-Sn(4)                      | 2.9600(9)                                  |
| Lu(3)-Sn(1)                       | 3.040(1)                                     | Lu(6)-Sn(6)                      | $3.1508(7) \times 2$                       |
| Lu(3) - Sn(6)                     | $3.0921(8) \times 2$                         | Lu(6) - Sn(1)                    | 3.2128(9)                                  |
| Lu(3) - Sn(3)                     | 3.108(1)                                     | Lu(6) - Sn(2)                    | $3.2740(6) \times 2$                       |
| Lu(3) - Sn(4)                     | $3.2/36(6) \times 2$                         | Lu(6) - Mn(1)                    | $3.295(1) \times 2$                        |
| Lu(3) - Ivin(1)                   | $3.409(1) \times 2$                          | Sn(3) - Sn(5)                    | 2.958(1)                                   |
| NIn(1) - Sn(2)<br>Nn(1) - Sn(4)   | 2.743(1)                                     | Sn(3) - Sn(7)                    | $2.9086(9) \times 2$                       |
| VIII(1) - SII(4)<br>Mn(1) - Sn(1) | 2.780(1)                                     | SII(4) - SII(7)<br>Sr(5) - Sr(6) | $3.0904(8) \times 2$                       |
| NIII(1) - SII(1)<br>Mp(1) - Sp(5) | 2.793(1)                                     | SII(5) - SII(6)<br>Sp(6) - Sp(6) | $3.017(1) \times 2$                        |
| Mn(1) - Sn(3)                     | 2.605(1)                                     | SII(0) - SII(0)<br>Sp(6) - Sp(6) | 2.903(1)                                   |
| Mn(1) - Mn(1)                     | 2.805(1)                                     | Sn(7) - Sn(7)                    | 2.060(1)                                   |
| Mn(1) - Mn(1)                     | 2.000(2)                                     | Sn(7) - Sn(7)                    | 2.552(1)<br>3.053(1)                       |
| Sn(1) - Sn(7)                     | $3.0080(8) \times 2$                         | Sn(7) - Sn(7)                    | 3.033(1)                                   |
| Sn(7) - Sn(7)                     | $3.0030(8) \times 2$<br>$3.0238(9) \times 2$ | Sn(7) - Sn(8)                    | 3 1153(9)                                  |
| 31(2)-31(7)                       | 5.0250(5) × 2                                | 511(7)=511(8)                    | 5.1155(5)                                  |
| 4                                 | 2 0022(2)                                    | $I_{\rm H}(4)$ $S_{\rm P}(2)$    | 2 169(2)                                   |
| Lu(1) - Sn(4)                     | 2100(2)                                      | Lu(4) = SII(2)<br>Lu(4) = Sp(5)  | 2.100(2)                                   |
| Lu(1) - Sn(6)                     | 3.100(2)<br>$3.105(1) \times 2$              | Lu(4) = Sn(5)                    | 3.109(2)<br>3.211(2) > 2                   |
| Lu(1) = Sn(0)                     | $3.133(1) \times 2$<br>3.247(2)              | Lu(4) = Sn(5)                    | $3.211(2) \times 2$<br>$3.230(2) \times 2$ |
| Lu(1) - Sn(1)                     | 3.247(2)<br>$3.268(1) \times 2$              | Lu(4) - Mn(1)                    | $3.230(2) \times 2$<br>$3.309(2) \times 2$ |
| Lu(1) = Mn(1)                     | $3366(2) \times 2$                           | Lu(4) - Sn(6)                    | $3.303(2) \times 2$<br>$3.374(1) \times 2$ |
| Lu(2) - Sn(8)                     | 2,995(2)                                     | Lu(5) - Sn(3)                    | 2.987(2)                                   |
| Lu(2) - Sn(4)                     | 3.108(2)                                     | Lu(5) - Sn(1)                    | 2.988(2)                                   |
| Lu(2) - Sn(6)                     | $3.109(1) \times 2$                          | Lu(5) - Sn(8)                    | 3.236(2)                                   |
| Lu(2) - Mn(1)                     | $3.141(2) \times 2$                          | Lu(5) - Sn(6)                    | $3.282(2) \times 2$                        |
| Lu(2)-Sn(3)                       | $3.265(2) \times 2$                          | Lu(5)-Sn(8)                      | $3.321(2) \times 2$                        |
| Lu(2)-Sn(7)                       | $3.582(2) \times 2$                          | Lu(6) - Sn(5)                    | 2.921(2)                                   |
| Lu(3)-Sn(2)                       | 2.994(2)                                     | Lu(6)-Sn(4)                      | 2.970(2)                                   |
| Lu(3)-Sn(1)                       | 3.039(2)                                     | Lu(6)-Sn(6)                      | $3.147(1) \times 2$                        |
| Lu(3)-Sn(6)                       | $3.088(2) \times 2$                          | Lu(6)-Sn(1)                      | 3.209(2)                                   |
| Lu(3)-Sn(3)                       | 3.099(2)                                     | Lu(6)-Sn(2)                      | $3.262(1) \times 2$                        |
| Lu(3)-Sn(4)                       | $3.255(2) \times 2$                          | Lu(6)-Mn(1)                      | $3.261(2) \times 2$                        |
| Lu(3)-Mn(1)                       | 3.397(2) × 2                                 | Sn(3)-Sn(5)                      | 2.935(2)                                   |
| Mn(1)-Sn(2)                       | 2.742(2)                                     | Sn(3)-Sn(7)                      | $2.887(2) \times 2$                        |
| Mn(1)-Sn(4)                       | 2.792(2)                                     | Sn(4)-Sn(7)                      | $3.077(2) \times 2$                        |
| Mn(1)-Sn(1)                       | 2.787(2)                                     | Sn(5)-Sn(6)                      | $2.971(2) \times 2$                        |
| Mn(1)-Sn(5)                       | 2.777(2)                                     | Sn(6)-Sn(6)                      | 2.948(2)                                   |
| Mn(1)-Sn(3)                       | 2.794(2)                                     | Sn(6)-Sn(6)                      | 3.055(2)                                   |
| Mn(1)-Mn(1)                       | 2.892(4)                                     | Sn(7)-Sn(7)                      | 2.965(2)                                   |
| Mn(1)-Mn(1)                       | 3.111(4)                                     | Sn(7) - Sn(7)                    | 3.038(3)                                   |
| Sn(1) - Sn(7)                     | $2.976(2) \times 2$                          | Sn(7) - Sn(8)                    | 3.015(2)                                   |
| Sn(2) - Sn(7)                     | $3.010(2) \times 2$                          | Sn(7) - Sn(8)                    | 3.099(2)                                   |

and 2.927(1)-3.6024(8)Å, respectively, for compound **3**. In Lu<sub>3</sub>MnSn<sub>5-x</sub> phases, most of the Mn–Sn and Sn–Sn lengths are slightly shorter than those of Tm<sub>3</sub>MnSn<sub>5-x</sub> phases, which is in accordance with the radii of rare earth ions. In addition, it is found that most of the bond distances are decreased with the decrease in the Sn element, that is, the deficiency on some Sn sites slightly shorten the Mn–Sn and Sn–Sn bonds.

One prominent feature for the structure of  $Tm_3MnSn_{5-x}$  is the 1D [ $Mn_2Sn_5$ ] chain, in which Mn(1) atom is coordinated by five Sn atoms with a greatly distorted square pyramidal geometry and features 1D linear chain with alternant Mn–Mn bonds of 2.915(3) and 3.147(3) Å (Fig. 2a). The former is comparable with the longest Mn–Mn distances in elemental  $\alpha$ -Mn (*I*4-3*m*; 2.895 and

2.931 Å) [52]. So far, there have been several similar 1D linear Mn chains in related ternary Tm–Mn–*Tt* (Tt=Si, Sn) phases, such as Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub> and Tm<sub>2</sub>Mn<sub>3</sub>Si<sub>5</sub>, in which the Mn atoms are coordinated by six tetrel atoms. In Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub>, the [MnSn<sub>6</sub>] octahedra are condensed via face-sharing to form 1D [MnSn<sub>3</sub>] chain and Mn atoms feature 1D linear chain with equal Mn–Mn bonds of 2.918(1) Å (Fig. 2b) [39]. In Tm<sub>2</sub>Mn<sub>3</sub>Si<sub>5</sub>, the [MnSi<sub>6</sub>] polyhedra are fused via edge-sharing to form 1D [MnSn<sub>4</sub>] chain and Mn atoms feature linear chain with shorter Mn–Mn bonds of 2.692(1) Å (Fig. 2c) [40]. Similar bonding characters for Mn atoms have also been reported for many ternary manganese antimonides [53–55].

The most closely related structure to  $Tm_3MnSn_{5-x}$  in the framework feature is the Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub> structure. For the sake of clarity only, we describe their structures as composed of 1D [Mn<sub>2</sub>Sn<sub>5</sub>] chain, linear Sn chain and [Sn<sub>3</sub>] double chain in  $Tm_3MnSn_{5-x}$ , whereas 1D [MnSn<sub>3</sub>] chain and linear Sn chain in  $Tm_4Mn_4Sn_7$ . In  $Tm_3MnSn_{5-x}$ , the 1D  $[Mn_2Sn_5]$  chains are bridged by [Sn<sub>3</sub>] double chains to form 3D [Mn<sub>2</sub>Sn<sub>8</sub>] framework with large tunnels made by [Mn<sub>4</sub>Sn<sub>16</sub>] 20-memebered rings, which are transfixed by 1D Sn linear chain interconnecting to the 3D framework via Sn-Sn bonds (Fig. 1a). In Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub>, the 1D [MnSn<sub>3</sub>] chains are directly condensed via edge-sharing and Sn-Sn bonds to form 3D [Mn<sub>4</sub>Sn<sub>6</sub>] framework with smaller tunnels made by [Mn<sub>8</sub>Sn<sub>8</sub>] 16-memebered rings along the *c*-axis, which are transfixed by isolate 1D Sn linear chain without direct Sn-Sn contacts to the [Mn<sub>4</sub>Sn<sub>6</sub>] framework (Fig. 1b). All the Tm atoms encapsulated within the tunnels feature tube-like arrangements, the center of which are transfixed by linear 1D Sn chains for both compounds.

#### 3.2. Transport properties and electronic structure

To assess the feasibility of RE<sub>3</sub>MnSn<sub>5-x</sub> as magnetic resistance materials, preliminary measurements of their charge transport properties have been made. The present measurements are on unoptimized samples and further work will be necessary to understand how the level of Sn deficiencies affects these properties. The results of resistivity measurements for two compounds are presented in Fig. 4. Both compounds show typical metallic-like behavior. Their resistivities at room temperature are of the order of 135–200  $\mu\Omega$  cm, and they decrease continuously upon cooling and reach 85–100  $\mu\Omega$  cm at 5 K. Furthermore, we also examine their resistivities at various applied magnetic fields up to 5 T. It is found that their resistivities are almost unchanged at various magnetic fields for both compounds.

To investigate the electronic properties of the title compounds, we carried out accurate band structure calculation by using the FPLAPW method. The spin polarizations were properly taken into account by considering the f-electron of rare earth atoms and *d*-electron of manganese atoms. The electronic calculations were performed on hypothetical "RE<sub>3</sub>MnSn<sub>5</sub>" modes, in which all the Sn sites were considered as fully occupied. The calculated total density of states (TDOS) and partial density of states (PDOS) from each element for "Lu<sub>3</sub>MnSn<sub>5</sub>" are given in Fig. 5a. It is seen that the Fermi level fall in the nonzero area with large density of states, indicating that Lu<sub>3</sub>MnSn<sub>5</sub> is metallic. Below the Fermi level, the states in the energy range of -5 to 0 eV are essentially dominated by Sn 5p and Mn 3d electrons, and the states in the energy range of -10 to -5.3 eV are mainly contributed by the Sn 5s electrons. The narrow peaks located at about -5.0 eV below the Fermi level belong to the fully occupied Lu 4f states. The Mn 3*d* orbitals show the large spin splitting. The states with spin up are completely occupied while most of the states for spin down are almost empty. The PDOS of Sn atoms spread over the whole



**Fig. 1.** View of the structures of Tm<sub>3</sub>MnSn<sub>5-x</sub> along the *b*-axis (a) and Tm<sub>4</sub>Mn<sub>4</sub>Sn<sub>7</sub> along the *c*-axis (b). The thulium, manganese and tin atoms are drawn as gray, white and black spheres, respectively.



Fig. 2. Comparison of the  $[Mn_2Sn_5]$  chain in  $Tm_3MnSn_{5-x}$  (a),  $[MnSn_3]$  chain in  $Tm_4Mn_4Sn_7$  (b) and  $[MnSn_4]$  chain in  $Tm_2Mn_3Si_5$  (c).



**Fig. 3.** View of the 1D linear chain composed of Sn(6) atoms in  $Tm_3MnSn_{5-x}(a)$ , the  $[Sn_3]$  double chain in  $Tm_3MnSn_{5-x}(b)$  and the zigzag  $[Sn_3]$  single chain in  $Yb_4Mn_2Sn_5(c)$ .



Fig. 4. Temperature dependencies of the electrical resistivities of Lu<sub>3</sub>MnSn<sub>5</sub> (a) and Tm<sub>3</sub>MnSn<sub>5</sub> (b) measured at various magnetic fields.



Fig. 5. Total and partial density of states (DOS) carves for hypothetical Lu<sub>3</sub>MnSn<sub>5</sub> (a) and Tm<sub>3</sub>MnSn<sub>5</sub> modes (b). The Fermi level is set at 0 eV.

energy range with larger dispersion, which is mostly dominated by the  $\sigma$  interactions between nearly free electron-like Sn 5s(5p) orbitals. It should be noted that the Sn/5p-Mn/3d mixing just below the Fermi level indicates strong covalent character of the Mn-Sn bonds. The DOS of Tm3MnSn5 is similar to that of Lu<sub>3</sub>MnSn<sub>5</sub> except that the Tm 4f orbitals show small spin splitting around the Fermi level (Fig. 5b). These calculations indicate that the interactions between Sn 5p and Mn 3d orbitals around the Fermi level are mainly responsible for the metallicity of Lu<sub>3</sub>MnSn<sub>5</sub> as well as the Tm 4*f* orbitals for Tm<sub>3</sub>MnSn<sub>5</sub>. The real structures are deficient in one or two Sn sites relative to "RE<sub>3</sub>MnSn<sub>5</sub>" mode, but the decrease in electron count only shift the Fermi level negligibly.

Furthermore, considering the local 3*d* and 4*f* electrons in these compounds, we further perform the GGA+U (on-site coulombic energy correction) type calculations to examine the correlation of d or f electrons for "Lu<sub>3</sub>MnSn<sub>5</sub>". It is found that the partial DOS of Lu atoms is almost unchanged except for small quantitative changes (Fig. S3). For Mn atom, the PDOS of 3d orbitals feature little splitting with the increase of U value, but there are no obvious energy shift and change. Namely, the U parameter does not greatly influence the energy and DOS of 3d and 4f electrons for Lu<sub>3</sub>MnSn<sub>5</sub>. Thus, the GGA exchange correlation formation can give sufficient and reliable results.

In summary, we have successfully obtained one type of new rare earth manganese stannides,  $RE_3$ MnSn<sub>5-x</sub> (RE=Tm, Lu). Their structures belong to the Hf<sub>3</sub>Cr<sub>2</sub>Si<sub>4</sub> type and feature a 3D framework composed of 1D [Mn<sub>2</sub>Sn<sub>7</sub>] chain interconnected by [Sn<sub>3</sub>] double chain via Sn - Sn bonds, forming 1D large tunnel along the *b*-axis occupied by the rare earth atoms. The title compounds are metallic based on electronic structure calculations as well as resistivity measurements.

# Supplementary materials

X-ray crystallographic files in CIF format for the title compounds, tables of anisotropic displacement parameters, figures of the coordination geometries around the rare earth atoms, calculated DOS based on GGA+U type calculation, and simulated and experimental XRD powder patterns for two compounds.

# Acknowledgments

We thank the financial supports from the National Nature Science Foundation of China (Nos. 20573113, 20825104, 20731006 and 20821061).

# Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2010.07.003.

# References

- [1] J.R. Salvador, C. Malliakas, J.R. Gour, M.G. Kanatzidis, Chem. Mater. 17 (2005) 1636.
- [2] M.-K. Han, Y.-Q. Wu, M. Kramer, B. Vatovez, F. Grandjean, G.J. Long, G.J. Miller, Inorg. Chem. 45 (2006) 10503.
- J.R. Salvador, J.R. Gour, D. Bilc, S.D. Mahanti, M.G. Kanatzidis, Inorg. Chem. 43 [3] (2004) 1403.
- [4] H. Bie, O.Y. Zelinska, A.V. Tkachuk, A. Mar, Chem. Mater. 19 (2007) 4613.
- J.R. Salvador, D. Bilc, J.R. Gour, S.D. Mahanti, M.G. Kanatzidis, Inorg. Chem. 44 [5] (2005) 8670. [6]
- R. Pöttgen, Z. Naturforsch. 61b (2006) 677.
- [7] M.G. Kanatzidis, R. Pöttgen, W. Jeitschko, Angew. Chem. Int. Ed. 44 (2005) 6996
- [8] R.V. Skolozdra, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, 24, Elsvier, Amsterdam1997, p. 164.
- [9] R. Pöttgen, R.-D. Hoffmann, R. Müllmann, B.D. Mosel, G. Kotzyba, Chem. Eur. J. 3 (1997) 1852.
- [10] C.P. Sebastian, L. Zhang, C. Fehse, R.-D. Hoffmann, H. Eckert, R. Pöttgen, Inorg. Chem. 46 (2007) 771
- [11] R.-D. Hoffmann, R. Pöttgen, D. Kussmann, R. Müllmann, B.D. Mosel, Chem. Mater. 13 (2001) 4019.
- [12] J.L. Hodeau, J. Chenavas, M. Marezio, J.P. Remeika, Solid State Commun. 36 (1980) 839.
- [13] N.G. Patil, S. Ramakrishnan, Phys. Rev. B 59 (1999) 9581.
- [14] D. Niepmann, R. Pöttgen, B. Künnen, G. Kotzyba, C. Rosenhahn, B.D. Mosel, Chem. Mater. 11 (1999) 1597.

- [15] D. Niepmann, R. Pöttgen, B. Künnen, G. Kotzyba, B.D. Mosel, Chem. Mater. 12 (2000) 533.
- [16] M.L. Fornasini, P. Manfrinetti, D. Mazzone, P. Riani, G. Zanicchi, J. Solid State Chem. 177 (2004) 1919.
- [17] Z.-M. Sun, D.-C. Pan, X.-W. Lei, J.-G. Mao., J. Solid State Chem. 179 (2006) 3378.
  [18] M.A. Zhuravleva, D. Bilc, S.D. Mahanti, M.G. Kanatzidis, Z. Anorg. Allg. Chem.
- 629 (2003) 327.
   [19] E.L. Thomas, H.-O. Lee, A.N. Bankston, S. MaQuilon, P. Klavins, M. Moldovan,
- [19] E.L. Hornas, H.-O. Dee, A.N. Bankston, S. MaQuinoli, P. Mavlis, M. Woldovan D.P. Young, Z. Fisk, J.Y. Chan, J. Solid State Chem. 179 (2006) 1641.
- [20] X.-W. Lei, G.-H. Zhong, M.-J. Li, J.-G. Mao, J. Solid State Chem. 181 (2008) 2448.
- [21] G.-H. Zhong, X.-W. Lei, J.-G. Mao, Phys. Rev. B. 79 (2009) 094424.
- [22] X.-W. Lei, G.-H. Zhong, C.-L. Hu, J.-G. Mao, J. Alloys Compd. 485 (2009) 124.
- [23] R. Pöttgen, P.E. Arpe, C. Felser, D. Kußmann, R. Müllmann, B.D. Mosel, B. Künnen, G. Kotzyba, J. Solid State Chem. 145 (1999) 668.
- [24] E.K. Okudzeto, E.L. Thomas, M. Moldovan, D.P. Young, J.Y. Chan, Physica B 403 (2008) 1628.
- [25] B. Chevalier, J. Etourneau, J. Mater. Chem. 9 (1999) 1789.
- [26] D. Kaczorowski, K. Gofryk, L. Romaka, Ya. Mudryk, M. Monyk, P. Rogl, Intermetallics 13 (2005) 484.
- [27] R. Welter, G. Venturini, B. Malaman, J. Alloys Compd. 206 (1994) 55.
- [28] R. Welter, G. Venturini, E. Ressouche, B. Malaman, J. Alloys Compd. 228 (1995) 59
- [1995] 59.[29] D. Rossi, R. Marazza, D. Mazzone, R. Ferro, J. Less-Common Met. 59 (1978) 79.
- [30] M. Hofmann, S.J. Campbell, A. Szytula, J. Alloys Compd. 311 (2000) 137.
- [31] R.B. van Dover, E.M. Gyorgy, R.J. Cava, J.J. Krajewski, R.J. Felder, W.F. Peck, Phys. Rev. B, 47 (1993) 6134.
- [32] N.M. Norlidah, G. Venturini, B. Malaman, J. Alloys Compd. 268 (1998) 193.
- [33] S.-H. Kim, D.-K. Seo, R.K. Kremer, J. Köhler, A. Villesuzanne, M.-H. Whangbo, Chem. Mater. 17 (2005) 6338.

- [34] P. Schobinger-Papamantellos, J.H.V.J. Brabers, F.R. de Boer, K.H.J. Buschow, J. Alloys Compd. 203 (1994) 23.
- [35] G.-H. Guo, H.-B. Zhang, J. Alloys Compd. 429 (2007) 46.
- [36] A. Mar, C. Lefèvre, G. Venturini, J. Magn. Magn. Mater. 269 (2004) 380.
- [37] P.M. Levy, S.-F. Zhang, A. Fert, Phys. Rev. Lett. 65 (1990) 1643.
- [38] G. Venturini, B. Malaman, J. Alloys Compd. 261 (1997) 19.
   [39] B. Malaman, G. Venturini, B. Roques, Mater. Res. Bull. 24 (1989) 231.
- [40] R. Nirmala, V. Sankaranarayanan, K. Sethupathi, A.V. Morozkin, J. Alloys
- Compd. 325 (2001) 37. [41] V.Ya. Markiv, N.N. Belyavina, Dop. Akad. Nauk Ukr. RSR. B, Geol. Khim. Biol. 4
- (1986) 44.
- [42] CrystalClear version 1. 3. 5; Rigaku Corp.: Woodlands, TX, 1999.
- [43] G.M. Sheldrick, SHELX-97, Program for Crystal Structure Determination, 1997.
- [44] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B. 64 (2001) 195134.
- [45] K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147 (2002) 71.
- [46] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- [47] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, in: K. Schwarz (Ed.), WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, Technische Universität Wien, Austria, 2001.
- [48] P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B. 49 (1994) 16223.
- [49] V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B. 44 (1991) 943.
- [50] C. Lefèvre, G. Venturini, B. Malaman, J. Alloys Compd. 354 (2003) 47.
- [51] V. Hlukhyy, S. Eck, T.F. Fässler, Inorg. Chem. 45 (2006) 7408.
- [52] P. Villars, L.D. Calvert (Eds.), Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1991.
- [53] S. Bobev, J. Merz, Inorg. Chem. 45 (2006) 4047.
- [54] A.P. Holm, M.M. Olmstead, S.M. Kauzlarich, Inorg. Chem. 42 (2003) 1973.
- [55] S.-Q. Xia, S. Bobev, Inorg. Chem. 46 (2007) 874.